Results 1  10
of
145
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1605 (75 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
Relations among notions of security for publickey encryption schemes
, 1998
"... Abstract. We compare the relative strengths of popular notions of security for public key encryption schemes. We consider the goals of privacy and nonmalleability, each under chosen plaintext attack and two kinds of chosen ciphertext attack. For each of the resulting pairs of definitions we prove e ..."
Abstract

Cited by 504 (69 self)
 Add to MetaCart
(Show Context)
Abstract. We compare the relative strengths of popular notions of security for public key encryption schemes. We consider the goals of privacy and nonmalleability, each under chosen plaintext attack and two kinds of chosen ciphertext attack. For each of the resulting pairs of definitions we prove either an implication (every scheme meeting one notion must meet the other) or a separation (there is a scheme meeting one notion but not the other, assuming the first notion can be met at all). We similarly treat plaintext awareness, a notion of security in the random oracle model. An additional contribution of this paper is a new definition of nonmalleability which we believe is simpler than the previous one.
ChosenCiphertext Security from IdentityBased Encryption. Adv
 in Cryptology — Eurocrypt 2004, LNCS
, 2004
"... We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a n ..."
Abstract

Cited by 259 (13 self)
 Add to MetaCart
(Show Context)
We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCAsecurity; this paradigm avoids “proofs of wellformedness ” that have been shown to underlie previous constructions. Second, instantiating our construction using known IBE constructions we obtain CCAsecure encryption schemes whose performance is competitive with the most efficient CCAsecure schemes to date. Our techniques extend naturally to give an efficient method for securing also IBE schemes (even hierarchical ones) against adaptive chosenciphertext attacks. Coupled with previous work, this gives the first efficient constructions of CCAsecure IBE schemes. 1
The NPcompleteness column: an ongoing guide
 JOURNAL OF ALGORITHMS
, 1987
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freem ..."
Abstract

Cited by 220 (0 self)
 Add to MetaCart
(Show Context)
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freeman & Co., New York, 1979 (hereinafter referred to as "[G&J]"; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Noninteractive ZeroKnowledge
 SIAM J. COMPUTING
, 1991
"... This paper investigates the possibility of disposing of interaction between prover and verifier in a zeroknowledge proof if they share beforehand a short random string. Without any assumption, it is proven that noninteractive zeroknowledge proofs exist for some numbertheoretic languages for which ..."
Abstract

Cited by 212 (18 self)
 Add to MetaCart
(Show Context)
This paper investigates the possibility of disposing of interaction between prover and verifier in a zeroknowledge proof if they share beforehand a short random string. Without any assumption, it is proven that noninteractive zeroknowledge proofs exist for some numbertheoretic languages for which no efficient algorithm is known. If deciding quadratic residuosity (modulo composite integers whose factorization is not known) is computationally hard, it is shown that the NPcomplete language of satisfiability also possesses noninteractive zeroknowledge proofs.
Universally Composable TwoParty and MultiParty Secure Computation
, 2002
"... We show how to securely realize any twoparty and multiparty functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider an asynchronous multiparty network with open communication and an adversary that can adaptively corrupt as many pa ..."
Abstract

Cited by 156 (36 self)
 Add to MetaCart
(Show Context)
We show how to securely realize any twoparty and multiparty functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider an asynchronous multiparty network with open communication and an adversary that can adaptively corrupt as many parties as it wishes. In this setting, our protocols allow any subset of the parties (with pairs of parties being a special case) to securely realize any desired functionality of their local inputs, and be guaranteed that security is preserved regardless of the activity in the rest of the network. This implies that security is preserved under concurrent composition of an unbounded number of protocol executions, it implies nonmalleability with respect to arbitrary protocols, and more. Our constructions are in the common reference string model and rely on standard intractability assumptions.
Candidate Multilinear Maps from Ideal Lattices and Applications
, 2012
"... Wedescribeplausiblelatticebasedconstructionswithpropertiesthatapproximatethesoughtafter multilinear maps in harddiscretelogarithm groups, and show that some applications of such multilinear maps can be realized using our approximations. The security of our constructions relies on seemingly hard ..."
Abstract

Cited by 150 (14 self)
 Add to MetaCart
Wedescribeplausiblelatticebasedconstructionswithpropertiesthatapproximatethesoughtafter multilinear maps in harddiscretelogarithm groups, and show that some applications of such multilinear maps can be realized using our approximations. The security of our constructions relies on seemingly hard problems in ideal lattices, which can be viewed as extensions of the assumed hardness of the NTRU function.
Protecting Data Privacy in Private Information Retrieval Schemes
 JCSS
"... Private Information Retrieval (PIR) schemes allow a user to retrieve the ith bit of an nbit data string x, replicated in k 2 databases (in the informationtheoretic setting) or in k 1 databases (in the computational setting), while keeping the value of i private. The main cost measure for suc ..."
Abstract

Cited by 128 (21 self)
 Add to MetaCart
(Show Context)
Private Information Retrieval (PIR) schemes allow a user to retrieve the ith bit of an nbit data string x, replicated in k 2 databases (in the informationtheoretic setting) or in k 1 databases (in the computational setting), while keeping the value of i private. The main cost measure for such a scheme is its communication complexity.
Efficient noninteractive proof systems for bilinear groups
 In EUROCRYPT 2008, volume 4965 of LNCS
, 2008
"... Noninteractive zeroknowledge proofs and noninteractive witnessindistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that noninteractive zeroknow ..."
Abstract

Cited by 116 (7 self)
 Add to MetaCart
(Show Context)
Noninteractive zeroknowledge proofs and noninteractive witnessindistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that noninteractive zeroknowledge proofs have been constructed for general NPcomplete languages such as Circuit Satisfiability, causing an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this paper is a general methodology for constructing very simple and efficient noninteractive zeroknowledge proofs and noninteractive witnessindistinguishable proofs that work directly for groups with a bilinear map, without needing a reduction to Circuit Satisfiability. Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent years and have been used to construct a plethora of protocols. This paper provides noninteractive witnessindistinguishable proofs and noninteractive zeroknowledge proofs that can be used in connection with these protocols. Our goal is to spread the use of noninteractive cryptographic proofs from mainly theoretical purposes to the large class of practical cryptographic protocols based on bilinear groups.