Results 1  10
of
91
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1333 (62 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
ChosenCiphertext Security from IdentityBased Encryption. Adv
 in Cryptology — Eurocrypt 2004, LNCS
, 2004
"... We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a n ..."
Abstract

Cited by 199 (11 self)
 Add to MetaCart
We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCAsecurity; this paradigm avoids “proofs of wellformedness ” that have been shown to underlie previous constructions. Second, instantiating our construction using known IBE constructions we obtain CCAsecure encryption schemes whose performance is competitive with the most efficient CCAsecure schemes to date. Our techniques extend naturally to give an efficient method for securing also IBE schemes (even hierarchical ones) against adaptive chosenciphertext attacks. Coupled with previous work, this gives the first efficient constructions of CCAsecure IBE schemes. 1
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Noninteractive ZeroKnowledge
 SIAM J. COMPUTING
, 1991
"... This paper investigates the possibility of disposing of interaction between prover and verifier in a zeroknowledge proof if they share beforehand a short random string. Without any assumption, it is proven that noninteractive zeroknowledge proofs exist for some numbertheoretic languages for which ..."
Abstract

Cited by 188 (19 self)
 Add to MetaCart
This paper investigates the possibility of disposing of interaction between prover and verifier in a zeroknowledge proof if they share beforehand a short random string. Without any assumption, it is proven that noninteractive zeroknowledge proofs exist for some numbertheoretic languages for which no efficient algorithm is known. If deciding quadratic residuosity (modulo composite integers whose factorization is not known) is computationally hard, it is shown that the NPcomplete language of satisfiability also possesses noninteractive zeroknowledge proofs.
Universally Composable TwoParty and MultiParty Secure Computation
, 2002
"... We show how to securely realize any twoparty and multiparty functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider an asynchronous multiparty network with open communication and an adversary that can adaptively corrupt as many pa ..."
Abstract

Cited by 125 (32 self)
 Add to MetaCart
We show how to securely realize any twoparty and multiparty functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider an asynchronous multiparty network with open communication and an adversary that can adaptively corrupt as many parties as it wishes. In this setting, our protocols allow any subset of the parties (with pairs of parties being a special case) to securely realize any desired functionality of their local inputs, and be guaranteed that security is preserved regardless of the activity in the rest of the network. This implies that security is preserved under concurrent composition of an unbounded number of protocol executions, it implies nonmalleability with respect to arbitrary protocols, and more. Our constructions are in the common reference string model and rely on standard intractability assumptions.
Protecting Data Privacy in Private Information Retrieval Schemes
 JCSS
"... Private Information Retrieval (PIR) schemes allow a user to retrieve the ith bit of an nbit data string x, replicated in k 2 databases (in the informationtheoretic setting) or in k 1 databases (in the computational setting), while keeping the value of i private. The main cost measure for suc ..."
Abstract

Cited by 105 (19 self)
 Add to MetaCart
Private Information Retrieval (PIR) schemes allow a user to retrieve the ith bit of an nbit data string x, replicated in k 2 databases (in the informationtheoretic setting) or in k 1 databases (in the computational setting), while keeping the value of i private. The main cost measure for such a scheme is its communication complexity.
Improved Efficiency for CCASecure Cryptosystems Built Using IdentityBased Encryption
, 2004
"... Recently, Canetti, Halevi, and Katz showed a general method for constructing CCAsecure encryption schemes from identitybased encryption schemes in the standard model. We improve the efficiency of their construction, and show two specific instantiations of our resulting scheme which offer the most ..."
Abstract

Cited by 75 (8 self)
 Add to MetaCart
Recently, Canetti, Halevi, and Katz showed a general method for constructing CCAsecure encryption schemes from identitybased encryption schemes in the standard model. We improve the efficiency of their construction, and show two specific instantiations of our resulting scheme which offer the most efficient encryption (and, in one case, key generation) of any CCAsecure encryption scheme to date.
Resettable ZeroKnowledge
 In 32nd STOC
, 1999
"... We introduce the notion of Resettable ZeroKnowledge (rZK), a new security measure for cryptographic protocols which strengthens the classical notion of zeroknowledge. In essence, an rZK protocol is one that remains zero knowledge even if an adversary can interact with the prover many times, eac ..."
Abstract

Cited by 71 (7 self)
 Add to MetaCart
We introduce the notion of Resettable ZeroKnowledge (rZK), a new security measure for cryptographic protocols which strengthens the classical notion of zeroknowledge. In essence, an rZK protocol is one that remains zero knowledge even if an adversary can interact with the prover many times, each time resetting the prover to its initial state and forcing him to use the same random tape.
Efficient noninteractive proof systems for bilinear groups
 In EUROCRYPT 2008, volume 4965 of LNCS
, 2008
"... Noninteractive zeroknowledge proofs and noninteractive witnessindistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that noninteractive zeroknow ..."
Abstract

Cited by 70 (5 self)
 Add to MetaCart
Noninteractive zeroknowledge proofs and noninteractive witnessindistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that noninteractive zeroknowledge proofs have been constructed for general NPcomplete languages such as Circuit Satisfiability, causing an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this paper is a general methodology for constructing very simple and efficient noninteractive zeroknowledge proofs and noninteractive witnessindistinguishable proofs that work directly for groups with a bilinear map, without needing a reduction to Circuit Satisfiability. Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent years and have been used to construct a plethora of protocols. This paper provides noninteractive witnessindistinguishable proofs and noninteractive zeroknowledge proofs that can be used in connection with these protocols. Our goal is to spread the use of noninteractive cryptographic proofs from mainly theoretical purposes to the large class of practical cryptographic protocols based on bilinear groups.
ConstantRound CoinTossing With a Man in the Middle or Realizing the Shared Random String Model
 In 43rd FOCS
, 2002
"... We construct the first constantround nonmalleable commitment scheme and the first constantround nonmalleable zeroknowledge argument system, as defined by Dolev, Dwork and Naor. Previous constructions either used a nonconstant number of rounds, or were only secure under stronger setup assumption ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
We construct the first constantround nonmalleable commitment scheme and the first constantround nonmalleable zeroknowledge argument system, as defined by Dolev, Dwork and Naor. Previous constructions either used a nonconstant number of rounds, or were only secure under stronger setup assumptions. An example of such an assumption is the shared random string model where we assume all parties have access to a reference string that was chosen uniformly at random by a trusted dealer. We obtain these results by defining an adequate notion of nonmalleable cointossing, and presenting a constantround protocol that satisfies it. This protocol allows us to transform protocols that are nonmalleable in (a modified notion of) the shared random string model into protocols that are nonmalleable in the plain model (without any trusted dealer or setup assumptions). Observing that known constructions of a noninteractive nonmalleable zeroknowledge argument systems in the shared random string model are in fact nonmalleable in the modified model, and combining them with our cointossing protocol we obtain the results mentioned above. The techniques we use are different from those used in previous constructions of nonmalleable protocols. In particular our protocol uses diagonalization and a nonblackbox proof of security (in a sense similar to Barak’s zeroknowledge argument).