Results 1  10
of
68
Local stability of ergodic averages
 Transactions of the American Mathematical Society
"... We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesguemeasure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages An ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
(Show Context)
We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesguemeasure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L2([0,1]). In particular, there is no computable bound on the rate of convergence for that sequence. On the other hand, we show that, for any nonexpansive linear operator T on a separable Hilbert space, and any element f, it is possible to compute a bound on the rate of convergence of (Anf) from T, f, and the norm ‖f ∗ ‖ of the limit. In particular, if T is the Koopman operator arising from a computable ergodic measure preserving transformation of a probability space X and f is any computable element of L2(X), then there is a computable bound on the rate of convergence of the sequence (Anf). The mean ergodic theorem is equivalent to the assertion that for every function K(n) and every ε> 0, there is an n with the property that the ergodic averages Amf are stable to within ε on the interval [n, K(n)]. Even in situations where the sequence (Anf) does not have a computable limit, one can give explicit bounds on such n in terms of K and ‖f‖/ε. This tells us how far one has to search to find an n so that the ergodic averages are “locally stable ” on a large interval. We use these bounds to obtain a similarly explicit version of the pointwise ergodic theorem, and show that our bounds are qualitatively different from ones that can be obtained using upcrossing inequalities due to Bishop and Ivanov. Finally, we explain how our positive results can be viewed as an application of a body of general prooftheoretic methods falling under the heading of “proof mining.” 1
Proof Interpretations and the Computational Content of Proofs. Draft of book in preparation
, 2007
"... This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
(Show Context)
This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question
A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
, 2008
"... We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by ..."
Abstract

Cited by 9 (9 self)
 Add to MetaCart
(Show Context)
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [10]. 1
Computational interpretations of analysis via products of selection functions
 CIE 2010, INVITED TALK ON SPECIAL SESSION “PROOF THEORY AND COMPUTATION
, 2010
"... We show that the computational interpretation of full comprehension via two wellknown functional interpretations (dialectica and modified realizability) corresponds to two closely related infinite products of selection functions. ..."
Abstract

Cited by 9 (8 self)
 Add to MetaCart
(Show Context)
We show that the computational interpretation of full comprehension via two wellknown functional interpretations (dialectica and modified realizability) corresponds to two closely related infinite products of selection functions.
Applying Tree Languages in Proof Theory
 In AdrianHoria Dediu and Carlos MartínVide, editors, Language and Automata Theory and Applications (LATA) 2012, volume 7183 of Lecture Notes in Computer Science
, 2012
"... Abstract. We introduce a new connection between formal language theory and proof theory. One of the most fundamental proof transformations in a class of formal proofs is shown to correspond exactly to the computation of the language of a certain class of tree grammars. Translations in both direction ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a new connection between formal language theory and proof theory. One of the most fundamental proof transformations in a class of formal proofs is shown to correspond exactly to the computation of the language of a certain class of tree grammars. Translations in both directions, from proofs to grammars and from grammars to proofs, are provided. This correspondence allows theoretical as well as practical applications. 1
Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces
, 2008
"... This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the g ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the general program of extracting effective data from primafacie ineffective proofs in the fixed point theory of such mappings.
Functional interpretation and inductive definitions
 Journal of Symbolic Logic
"... Abstract. Extending Gödel’s Dialectica interpretation, we provide a functional interpretation of classical theories of positive arithmetic inductive definitions, reducing them to theories of finitetype functionals defined using transfinite recursion on wellfounded trees. 1. ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Extending Gödel’s Dialectica interpretation, we provide a functional interpretation of classical theories of positive arithmetic inductive definitions, reducing them to theories of finitetype functionals defined using transfinite recursion on wellfounded trees. 1.
Forcing in Proof Theory
 BULL SYMB LOGIC
, 2004
"... Paul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
(Show Context)
Paul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbertstyle proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects of forcing that are useful in this respect, and some sample applications. The latter include ways of obtaining conservation results for classical and intuitionistic theories, interpreting classical theories in constructive ones, and constructivizing modeltheoretic arguments.
The metamathematics of ergodic theory
 THE ANNALS OF PURE AND APPLIED LOGIC
, 2009
"... The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theo ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
(Show Context)
The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns and recent applications to combinatorics and number theory force us to reconsider the constructive character of the theory and its methods. This paper surveys some recent contributions to the metamathematical study of ergodic theory, focusing on the mean and pointwise ergodic theorems and the Furstenberg structure theorem for measure preserving systems. In particular, I characterize the extent to which these theorems are nonconstructive, and explain how prooftheoretic methods can be used to locate their “constructive content.”