Results 1  10
of
58
QuadCover – Surface Parameterization using Branched Coverings.
 COMPUT. GRAPH. FORUM
, 2007
"... We introduce an algorithm for automatic computation of global parameterizations on arbitrary simplicial 2manifolds whose parameter lines are guided by a given frame field, for example by principal curvature frames. The parameter lines are globally continuous, and allow a remeshing of the surface in ..."
Abstract

Cited by 63 (7 self)
 Add to MetaCart
We introduce an algorithm for automatic computation of global parameterizations on arbitrary simplicial 2manifolds whose parameter lines are guided by a given frame field, for example by principal curvature frames. The parameter lines are globally continuous, and allow a remeshing of the surface into quadrilaterals. The algorithm converts a given frame field into a single vector field on a branched covering of the 2manifold, and generates an integrable vector field by a Hodge decomposition on the covering space. Except for an optional smoothing and alignment of the initial frame field, the algorithm is fully automatic and generates high quality quadrilateral meshes.
Mixedinteger quadrangulation
 ACM TRANS. GRAPH
, 2009
"... We present a novel method for quadrangulating a given triangle mesh. After constructing an as smooth as possible symmetric cross field satisfying a sparse set of directional constraints (to capture the geometric structure of the surface), the mesh is cut open in order to enable a low distortion un ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
We present a novel method for quadrangulating a given triangle mesh. After constructing an as smooth as possible symmetric cross field satisfying a sparse set of directional constraints (to capture the geometric structure of the surface), the mesh is cut open in order to enable a low distortion unfolding. Then a seamless globally smooth parametrization is computed whose isoparameter lines follow the cross field directions. In contrast to previous methods, sparsely distributed directional constraints are sufficient to automatically determine the appropriate number, type and position of singularities in the quadrangulation. Both steps of the algorithm (cross field and parametrization) can be formulated as a mixedinteger problem which we solve very efficiently by an adaptive greedy solver. We show several complex examples where high quality quad meshes are generated in a fully automatic manner.
Mesh parameterization methods and their applications
 FOUNDATIONS AND TRENDSÂŐ IN COMPUTER GRAPHICS AND VISION
, 2006
"... We present a survey of recent methods for creating piecewise linear mappings between triangulations in 3D and simpler domains such as planar regions, simplicial complexes, and spheres. We also discuss emerging tools such as global parameterization, intersurface mapping, and parameterization with co ..."
Abstract

Cited by 46 (1 self)
 Add to MetaCart
We present a survey of recent methods for creating piecewise linear mappings between triangulations in 3D and simpler domains such as planar regions, simplicial complexes, and spheres. We also discuss emerging tools such as global parameterization, intersurface mapping, and parameterization with constraints. We start by describing the wide range of applications where parameterization tools have been used in recent years. We then briefly review the pertinent mathematical background and terminology, before proceeding to survey the existing parameterization techniques. Our survey summarizes the main ideas of each technique and discusses its main properties, comparing it to other methods available. Thus it aims to provide guidance to researchers and developers when assessing the suitability of different methods for various applications. This survey focuses on the practical aspects of the methods available, such as time complexity and robustness and shows multiple examples of parameterizations generated using different methods, allowing the reader to visually evaluate and compare the results.
Mesh Parameterization: Theory and Practice
 SIGGRAPH ASIA 2008 COURSE NOTES
, 2008
"... Mesh parameterization is a powerful geometry processing tool with numerous computer graphics applications, from texture mapping to animation transfer. This course outlines its mathematical foundations, describes recent methods for parameterizing meshes over various domains, discusses emerging tools ..."
Abstract

Cited by 37 (2 self)
 Add to MetaCart
Mesh parameterization is a powerful geometry processing tool with numerous computer graphics applications, from texture mapping to animation transfer. This course outlines its mathematical foundations, describes recent methods for parameterizing meshes over various domains, discusses emerging tools like global parameterization and intersurface mapping, and demonstrates a variety of parameterization applications.
Conformal Flattening by Curvature Prescription and Metric Scaling
, 2008
"... We present an efficient method to conformally parameterize 3D mesh data sets to the plane. The idea behind our method is to concentrate all the 3D curvature at a small number of select mesh vertices, called cone singularities, and then cut the mesh through those singular vertices to obtain disk topo ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
We present an efficient method to conformally parameterize 3D mesh data sets to the plane. The idea behind our method is to concentrate all the 3D curvature at a small number of select mesh vertices, called cone singularities, and then cut the mesh through those singular vertices to obtain disk topology. The singular vertices are chosen automatically. As opposed to most previous methods, our flattening process involves only the solution of linear systems of Poisson equations, thus is very efficient. Our method is shown to be faster than existing methods, yet generates parameterizations having comparable quasiconformal distortion.
Discrete Surface Ricci Flow
 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
"... This work introduces a unified framework for discrete surface Ricci flow algorithms, including spherical, Euclidean, and hyperbolic Ricci flows, which can design Riemannian metrics on surfaces with arbitrary topologies by userdefined Gaussian curvatures. Furthermore, the target metrics are conform ..."
Abstract

Cited by 26 (18 self)
 Add to MetaCart
This work introduces a unified framework for discrete surface Ricci flow algorithms, including spherical, Euclidean, and hyperbolic Ricci flows, which can design Riemannian metrics on surfaces with arbitrary topologies by userdefined Gaussian curvatures. Furthermore, the target metrics are conformal (anglepreserving) to the original metrics. Ricci flow conformally deforms the Riemannian metric on a surface according to its induced curvature, such that the curvature evolves like a heat diffusion process. Eventually, the curvature becomes the user defined curvature. Discrete Ricci flow algorithms are based on a variational framework. Given a mesh, all possible metrics form a linear space, and all possible curvatures form a convex polytope. The Ricci energy is defined on the metric space, which reaches its minimum at the desired metric. The Ricci flow is the negative gradient flow of the Ricci energy. Furthermore, the Ricci energy can be optimized using Newton’s method more efficiently. Discrete Ricci flow algorithms are rigorous and efficient. Our experimental results demonstrate the efficiency, accuracy and flexibility of the algorithms. They have the potential for a wide range of applications in graphics, geometric modeling, and medical imaging. We demonstrate their practical values by global surface parameterizations.
Discrete surface ricci flow: theory and applications
 Mathematics of Surfaces XII. Lecture Notes in Computer Science
, 2007
"... Abstract. Conformal geometry is at the core of pure mathematics. Conformal structure is more flexible than Riemaniann metric but more rigid than topology. Conformal geometric methods have played important roles in engineering fields. This work introduces a theoretically rigorous and practically eff ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Abstract. Conformal geometry is at the core of pure mathematics. Conformal structure is more flexible than Riemaniann metric but more rigid than topology. Conformal geometric methods have played important roles in engineering fields. This work introduces a theoretically rigorous and practically efficient method for computing Riemannian metrics with prescribed Gaussian curvatures on discrete surfaces—discrete surface Ricci flow, whose continuous counter part has been used in the proof of Poincare ́ conjecture. Continuous Ricci flow conformally deforms a Riemannian metric on a smooth surface such that the Gaussian curvature evolves like a heat diffusion process. Eventually, the Gaussian curvature becomes constant and the limiting Riemannian metric is conformal to the original one. In the discrete case, surfaces are represented as piecewise linear triangle meshes. Since the Riemannian metric and the Gaussian curvature are discretized as the edge lengths and the angle deficits, the discrete Ricci flow can be defined as the deformation of edge lengths driven by the discrete curvature. The existence and uniqueness of the solution and the convergence of the flow process are theoretically proven, and numerical algorithms to compute Riemannian metrics with prescribed Gaussian curvatures using discrete Ricci flow are also designed. Discrete Ricci flow has broad applications in graphics, geometric modeling, and medical imaging, such as surface parameterization, surface matching, manifold splines, and construction of geometric structures on general surfaces. 1
Polycube splines
, 2008
"... This paper proposes a new concept of polycube splines and develops novel modeling techniques for using the polycube splines in solid modeling and shape computing. Polycube splines are essentially a novel variant of manifold splines which are built upon the polycube map, serving as its parametric dom ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
This paper proposes a new concept of polycube splines and develops novel modeling techniques for using the polycube splines in solid modeling and shape computing. Polycube splines are essentially a novel variant of manifold splines which are built upon the polycube map, serving as its parametric domain. Our rationale for defining spline surfaces over polycubes is that polycubes have rectangular structures everywhere over their domains, except a very small number of corner points. The boundary of polycubes can be naturally decomposed into a set of regular structures, which facilitate tensorproduct surface definition, GPUcentric geometric computing, and imagebased geometric processing. We develop algorithms to construct polycube maps, and show that the introduced polycube map naturally induces the affine structure with a finite number of extraordinary points. Besides its intrinsic rectangular structure, the polycube map may approximate any original scanned dataset with a very low geometric distortion, so our method for building polycube splines is both natural and necessary, as its parametric domain can mimic the geometry of modeled objects in a topologically correct and geometrically meaningful manner. We design a new data structure that facilitates the intuitive and rapid construction of polycube splines in this paper. We demonstrate the polycube splines with applications in surface reconstruction and shape computing.
Almost isometric mesh parameterization through abstract domains
 621–635, July/August 2010. [Online]. Available: http://vcg.isti.cnr.it/Publications/ 2010/PTC10
"... domains ..."