Results 1  10
of
42
PopulationBased Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
, 1994
"... Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within th ..."
Abstract

Cited by 298 (11 self)
 Add to MetaCart
Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within the framework of competitive learning. This new perspective reveals a number of different possibilities for performance improvements. This paper explores populationbased incremental learning (PBIL), a method of combining the mechanisms of a generational genetic algorithm with simple competitive learning. The combination of these two methods reveals a tool which is far simpler than a GA, and which outperforms a GA on large set of optimization problems in terms of both speed and accuracy. This paper presents an empirical analysis of where the proposed technique will outperform genetic algorithms, and describes a class of problems in which a genetic algorithm may be able to perform better. Extensions to this algorithm are discussed and analyzed. PBIL and extensions are compared with a standard GA on twelve problems, including standard numerical optimization functions, traditional GA test suite problems, and NPComplete problems.
Removing the Genetics from the Standard Genetic Algorithm
, 1995
"... We present an abstraction of the genetic algorithm (GA), termed populationbased incremental learning (PBIL), that explicitly maintains the statistics contained in a GA's population, but which abstracts away the crossover operator and redefines the role of the population. This results in PBIL being ..."
Abstract

Cited by 178 (10 self)
 Add to MetaCart
We present an abstraction of the genetic algorithm (GA), termed populationbased incremental learning (PBIL), that explicitly maintains the statistics contained in a GA's population, but which abstracts away the crossover operator and redefines the role of the population. This results in PBIL being simpler, both computationally and theoretically, than the GA. Empirical results reported elsewhere show that PBIL is faster and more effective than the GA on a large set of commonly used benchmark problems. Here we present results on a problem custom designed to benefit both from the GA's crossover operator and from its use of a population. The results show that PBIL performs as well as, or better than, GAs carefully tuned to do well on this problem. This suggests that even on problems custom designed for GAs, much of the power of the GA may derive from the statistics maintained implicitly in its population, and not from the population itself nor from the crossover operator. Removing the Ge...
An Indexed Bibliography of Genetic Algorithms in Power Engineering
, 1995
"... s: Jan. 1992  Dec. 1994 ffl CTI: Current Technology Index Jan./Feb. 1993  Jan./Feb. 1994 ffl DAI: Dissertation Abstracts International: Vol. 53 No. 1  Vol. 55 No. 4 (1994) ffl EEA: Electrical & Electronics Abstracts: Jan. 1991  Dec. 1994 ffl P: Index to Scientific & Technical Proceedings: Ja ..."
Abstract

Cited by 73 (8 self)
 Add to MetaCart
s: Jan. 1992  Dec. 1994 ffl CTI: Current Technology Index Jan./Feb. 1993  Jan./Feb. 1994 ffl DAI: Dissertation Abstracts International: Vol. 53 No. 1  Vol. 55 No. 4 (1994) ffl EEA: Electrical & Electronics Abstracts: Jan. 1991  Dec. 1994 ffl P: Index to Scientific & Technical Proceedings: Jan. 1986  Feb. 1995 (except Nov. 1994) ffl EI A: The Engineering Index Annual: 1987  1992 ffl EI M: The Engineering Index Monthly: Jan. 1993  Dec. 1994 The following GA researchers have already kindly supplied their complete autobibliographies and/or proofread references to their papers: Dan Adler, Patrick Argos, Jarmo T. Alander, James E. Baker, Wolfgang Banzhaf, Ralf Bruns, I. L. Bukatova, Thomas Back, Yuval Davidor, Dipankar Dasgupta, Marco Dorigo, Bogdan Filipic, Terence C. Fogarty, David B. Fogel, Toshio Fukuda, Hugo de Garis, Robert C. Glen, David E. Goldberg, Martina GorgesSchleuter, Jeffrey Horn, Aristides T. Hatjimihail, Mark J. Jakiela, Richard S. Judson, Akihiko Konaga...
A Genetic Approach to the Quadratic Assignment Problem
, 1995
"... The Quadratic Assignment Problem (QAP) is a wellknown combinatorial optimization problem with a wide variety of practical applications. Although many heuristics and semienumerative procedures for QAP have been proposed, no dominant algorithm has emerged. In this paper, we describe a Genetic Algori ..."
Abstract

Cited by 54 (7 self)
 Add to MetaCart
The Quadratic Assignment Problem (QAP) is a wellknown combinatorial optimization problem with a wide variety of practical applications. Although many heuristics and semienumerative procedures for QAP have been proposed, no dominant algorithm has emerged. In this paper, we describe a Genetic Algorithm (GA) approach to QAP. Genetic algorithms are a class of randomized parallel search heuristics which emulate biological natural selection on a population of feasible solutions. We present computational results which show that this GA approach finds solutions competitive with those of the best previouslyknown heuristics, and argue that genetic algorithms provide a particularly robust method for QAP and its more complex extensions. 5 A Genetic Approach to the Quadratic Assignment Problem David M. Tate and Alice E. Smith Department of Industrial Engineering 1048 Benedum Hall University of Pittsburgh Pittsburgh, PA 15261 4126249837 4126249831 (Fax) 1. Introduction The Quadrat...
Structure and Performance of FineGrain Parallelism in Genetic Search
, 1993
"... Within the parallel genetic algorithm framework, there currently exists a growing dichotomy between coarsegrain and finegrain parallel architectures. This paper attempts to characterize the need for finegrain parallelism. and to introduce and compare three models of finegrain parallel genetic al ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
Within the parallel genetic algorithm framework, there currently exists a growing dichotomy between coarsegrain and finegrain parallel architectures. This paper attempts to characterize the need for finegrain parallelism. and to introduce and compare three models of finegrain parallel genetic algorithms (GAs). The performance of the three models is examined on seventeen test problems and is compared to the performance of a coarsegrain parallel GA. Preliminary. results indicate that the massive distribution of the finegrain parallel GA and the modified population topology yield improvements in speed and in the number of evaluations required to find global optima.
Parallel genetic simulated annealing: a massively parallel SIMD algorithm
 IEEE Transactions on Parallel and Distributed Systems
, 1998
"... Abstract—Many significant engineering and scientific problems involve optimization of some criteria over a combinatorial configuration space. The two methods most often used to solve these problems effectively—simulated annealing (SA) and genetic algorithms (GA)—do not easily lend themselves to mass ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
Abstract—Many significant engineering and scientific problems involve optimization of some criteria over a combinatorial configuration space. The two methods most often used to solve these problems effectively—simulated annealing (SA) and genetic algorithms (GA)—do not easily lend themselves to massive parallel implementations. Simulated annealing is a naturally serial algorithm, while GA involves a selection process that requires global coordination. This paper introduces a new hybrid algorithm that inherits those aspects of GA that lend themselves to parallelization, and avoids serial bottlenecks of GA approaches by incorporating elements of SA to provide a completely parallel, easily scalable hybrid GA/SA method. This new method, called Genetic Simulated Annealing, does not require parallelization of any problem specific portions of a serial implementation—existing serial implementations can be incorporated as is. Results of a study on two difficult combinatorial optimization problems, a 100 city traveling salesperson problem and a 24 word, 12 bit error correcting code design problem, performed on a 16K PE MasPar MP1, indicate advantages over previous parallel GA and SA approaches. One of the key results is that the performance of the algorithm scales up linearly with the increase of processing elements, a feature not demonstrated by any previous parallel GA or SA approaches, which enables the new algorithm to utilize massive parallel architecture with maximum effectiveness. Additionally, the algorithm does not require careful choice of control parameters, a significant advantage over SA and GA.
Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation
, 1995
"... Among the existing texture segmentation methods, those relying on Markov random fields have retained substantial interest and have proved to be very efficient in supervised mode. The use of Markov random fields in unsupervised mode is however hampered by the parameter estimation problem. The recent ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
Among the existing texture segmentation methods, those relying on Markov random fields have retained substantial interest and have proved to be very efficient in supervised mode. The use of Markov random fields in unsupervised mode is however hampered by the parameter estimation problem. The recent solutions proposed to overcome this difficulty rely on the assumptions that the shapes of the textured regions are simple or that there is only a limited number of textures in the input image. Besides the fact that these assumptions may not be satisfied in practice, Markov random fields based methods are often computationally expensive. In this paper, an evolutionary approach, selectionist relaxation, is proposed as a solution to the problem of segmenting Markov random field modeled textures in unsupervised mode. In selectionist relaxation, the computation is distributed among a population of units that iteratively evolves according to simple and local evolutionary rules. A unit is an associ...
Population Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitve Learning
, 1994
"... Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within the framework of competitive learning. This new perspective reveals a number of different possibilities for performance improvements. This paper explores population based incremental learning (PBIL), a method of combining the mechanisms of a generational genetic algorithm with simple competitive learning. The combination of these two methods reveals a tool which is far simpler than a GA, and which outperforms a GA on large set of optimization problems in terms of both speed and accuracy. This paper presents an empirical analysis of where the proposed technique will outperform genetic algorithms, and describes a class of problems in which a genetic algorithm may be able to perform b...
Adaptive Penalty Methods For Genetic Optimization Of Constrained Combinatorial Problems
 INFORMS Journal on Computing
, 1996
"... The application of genetic algorithms (GA) to constrained optimization problems has been hindered by the inefficiencies of reproduction and mutation when feasibility of generated solutions is impossible to guarantee and feasible solutions are very difficult to find. Although several authors have ..."
Abstract

Cited by 26 (12 self)
 Add to MetaCart
The application of genetic algorithms (GA) to constrained optimization problems has been hindered by the inefficiencies of reproduction and mutation when feasibility of generated solutions is impossible to guarantee and feasible solutions are very difficult to find. Although several authors have suggested the use of both static and dynamic penalty functions for genetic search, this paper presents a general adaptive penalty technique which makes use of feedback obtained during the search along with a dynamic distance metric. The effectiveness of this method is illustrated on two diverse combinatorial applications; (1) the unequalarea, shapeconstrained facility layout problem and (2) the seriesparallel redundancy allocation problem to maximize system reliability given cost and weight constraints. The adaptive penalty function is shown to be robust with regard to random number seed, parameter settings, number and degree of constraints, and problem instance. 1. Introduction ...
Evolutionary Monte Carlo: Applications to C_p Model Sampling and Change Point Problem
 STATISTICA SINICA
, 2000
"... Motivated by the success of genetic algorithms and simulated annealing in hard optimization problems, the authors propose a new Markov chain Monte Carlo (MCMC) algorithm so called an evolutionary Monte Carlo algorithm. This algorithm has incorporated several attractive features of genetic algorithms ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
Motivated by the success of genetic algorithms and simulated annealing in hard optimization problems, the authors propose a new Markov chain Monte Carlo (MCMC) algorithm so called an evolutionary Monte Carlo algorithm. This algorithm has incorporated several attractive features of genetic algorithms and simulated annealing into the framework of MCMC. It works by simulating a population of Markov chains in parallel, where each chain is attached to a different temperature. The population is updated by mutation (Metropolis update), crossover (partial state swapping) and exchange operators (full state swapping). The algorithm is illustrated through examples of the Cpbased model selection and changepoint identification. The numerical results and the extensive comparisons show that evolutionary Monte Carlo is a promising approach for simulation and optimization.