Results 1  10
of
469
Approximating discrete probability distributions with dependence trees
 IEEE Transactions on Information Theory
, 1968
"... AbsfracfA method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence.The problem is to find an optimum set of n 1 first order dependence relationship among the n ..."
Abstract

Cited by 655 (0 self)
 Add to MetaCart
AbsfracfA method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence.The problem is to find an optimum set of n 1 first order dependence relationship among the n variables. It is shown that the procedure derived in this paper yields an approximation of a minimum difference in information. It is further shown that when this procedure is applied to empirical observations from an unknown distribution of tree dependence, the procedure is the maximumlikelihood estimate of the distribution.
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 572 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
Problems in Computational Geometry
 Packing and Covering
, 1974
"...  reproduced, stored In a retrieval system, or transmlt'ted, In any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the author. ..."
Abstract

Cited by 454 (2 self)
 Add to MetaCart
 reproduced, stored In a retrieval system, or transmlt'ted, In any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the author.
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 353 (21 self)
 Add to MetaCart
We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization problems fit in this framework, including the shortest path, minimumcost spanning tree, minimumweight perfect matching, traveling salesman, and Steiner tree problems. Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of 2 of optimal for most of these problems. For instance, we obtain a 2approximation algorithm for the minimumweight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares favorably with the best strongly polynomial exact algorithms running in O(n 3) time for dense graphs. A similar result is obtained for the 2matching problem and its variants. We also derive the first approximation algorithms for many NPcomplete problems, including the nonfixed pointtopoint connection problem, the exact path partitioning problem, and complex locationdesign problems. Moreover, for the prizecollecting traveling salesman or Steiner tree problems, we obtain 2approximation algorithms, therefore improving the previously bestknown performance guarantees of 2.5 and 3, respectively [Math. Programming, 59 (1993), pp. 413420].
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 210 (9 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
A Randomized LinearTime Algorithm to Find Minimum Spanning Trees
, 1994
"... We present a randomized lineartime algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered lineartime algorithm for verifying a minimum spanning tree. Our computational model is a unitcost ra ..."
Abstract

Cited by 120 (7 self)
 Add to MetaCart
We present a randomized lineartime algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered lineartime algorithm for verifying a minimum spanning tree. Our computational model is a unitcost randomaccess machine with the restriction that the only operations allowed on edge weights are binary comparisons.
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 120 (7 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
Learning from Labeled and Unlabeled Data with Label Propagation
, 2002
"... We investigate the use of unlabeled data to help labeled data in classification. We propose a simple iterative algorithm, label propagation, to propagate labels through the dataset along high density areas defined by unlabeled data. We give the analysis of the algorithm, show its solution, and its c ..."
Abstract

Cited by 111 (0 self)
 Add to MetaCart
We investigate the use of unlabeled data to help labeled data in classification. We propose a simple iterative algorithm, label propagation, to propagate labels through the dataset along high density areas defined by unlabeled data. We give the analysis of the algorithm, show its solution, and its connection to several other algorithms. We also show how to learn parameters by minimum spanning tree heuristic and entropy minimization, and the algorithm's ability to do feature selection. Experiment results are promising.
A new approach to the minimum cut problem
 Journal of the ACM
, 1996
"... Abstract. This paper presents a new approach to finding minimum cuts in undirected graphs. The fundamental principle is simple: the edges in a graph’s minimum cut form an extremely small fraction of the graph’s edges. Using this idea, we give a randomized, strongly polynomial algorithm that finds th ..."
Abstract

Cited by 99 (8 self)
 Add to MetaCart
Abstract. This paper presents a new approach to finding minimum cuts in undirected graphs. The fundamental principle is simple: the edges in a graph’s minimum cut form an extremely small fraction of the graph’s edges. Using this idea, we give a randomized, strongly polynomial algorithm that finds the minimum cut in an arbitrarily weighted undirected graph with high probability. The algorithm runs in O(n 2 log 3 n) time, a significant improvement over the previous Õ(mn) time bounds based on maximum flows. It is simple and intuitive and uses no complex data structures. Our algorithm can be parallelized to run in �� � with n 2 processors; this gives the first proof that the minimum cut problem can be solved in ���. The algorithm does more than find a single minimum cut; it finds all of them. With minor modifications, our algorithm solves two other problems of interest. Our algorithm finds all cuts with value within a multiplicative factor of � of the minimum cut’s in expected Õ(n 2 � ) time, or in �� � with n 2 � processors. The problem of finding a minimum multiway cut of a graph into r pieces is solved in expected Õ(n 2(r�1) ) time, or in �� � with n 2(r�1) processors. The “trace ” of the algorithm’s execution on these two problems forms a new compact data structure for representing all small cuts and all multiway cuts in a graph. This data structure can be efficiently transformed into the