Results 1 - 10
of
19
Realising the future: forecasting with high frequency based volatility (HEAVY) models
, 2009
"... This paper studies in some detail a class of high frequency based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realized measures constructed from high frequency data. Our analysis identifies that the models have momentum and mean reversion effec ..."
Abstract
-
Cited by 35 (3 self)
- Add to MetaCart
This paper studies in some detail a class of high frequency based volatility (HEAVY) models. These models are direct models of daily asset return volatility based on realized measures constructed from high frequency data. Our analysis identifies that the models have momentum and mean reversion effects, and that they adjust quickly to structural breaks in the level of the volatility process. We study how to estimate the models and how they perform through the credit crunch, comparing their fit to more traditional GARCH models. We analyse a model based bootstrap which allow us to estimate the entire predictive distribution of returns. We also provide an analysis of missing data in the context of these models.
Financial Risk Measurement for Financial Risk Management
, 2011
"... Current practice largely follows restrictive approaches to market risk measurement, such as historical simulation or RiskMetrics. In contrast, we propose flexible methods that exploit recent developments in financial econometrics and are likely to produce more accurate risk assessments, treating bot ..."
Abstract
-
Cited by 11 (3 self)
- Add to MetaCart
Current practice largely follows restrictive approaches to market risk measurement, such as historical simulation or RiskMetrics. In contrast, we propose flexible methods that exploit recent developments in financial econometrics and are likely to produce more accurate risk assessments, treating both portfoliolevel and asset-level analysis. Asset-level analysis is particularly challenging because the demands of real-world risk management in financial institutions – in particular, real-time risk tracking in very high-dimensional situations – impose strict limits on model complexity. Hence we stress powerful yet parsimonious models that are easily estimated. In addition, we emphasize the need for deeper understanding of the links between market risk and macroeconomic fundamentals, focusing primarily on links among equity return volatilities, real growth, and real growth volatilities. Throughout, we strive not only to deepen our scientific understanding of market risk, but also cross-fertilize the academic and practitioner communities, promoting improved market risk measurement
Volatility forecasting: The jumps do matter
, 2008
"... This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is correctly separated into its continuous and discontinuous component. To this purpose, we intro ..."
Abstract
-
Cited by 5 (0 self)
- Add to MetaCart
This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is correctly separated into its continuous and discontinuous component. To this purpose, we introduce the concept of threshold multipower variation (TMPV), which is based on the joint use of bipower variation and threshold estimation. With respect to alternative methods, our TMPV estimator provides less biased and robust estimates of the continuous quadratic variation and jumps. This technique also provides a new test for jump detection which has substantially more power than traditional tests. We use this separation to forecast volatility by employing an heterogeneous autoregressive (HAR) model which is suitable to parsimoniously model long memory in realized volatility time series. Empirical analysis shows that the proposed techniques improve significantly the accuracy of volatility forecasts for the S&P500 index, single stocks and US bond yields, especially in periods following the occurrence of a jump.
Forecasting the Return Distribution Using High-Frequency Volatility Measures
, 2011
"... The aim of this paper is to forecast (out-of-sample) the distribution of financial returns based on realized volatility measures constructed from high-frequency returns. We adopt a semi-parametric model for the distribution by assuming that the return quantiles depend on the realized measures and ev ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
The aim of this paper is to forecast (out-of-sample) the distribution of financial returns based on realized volatility measures constructed from high-frequency returns. We adopt a semi-parametric model for the distribution by assuming that the return quantiles depend on the realized measures and evaluate the dis-tribution, quantile and interval forecasts of the quantile model in comparison to a benchmark GARCH model. The results suggest that the model outperforms an asymmetric GARCH specification when applied to the S&P 500 futures re-turns at the 1 and 2 day, in particular on the right tail of the distribution. However, the model provides similar accuracy to a GARCH(1,1) model when the 30-year Treasury bond futures return is considered.
The relationship between the volatility of returns and the number of jumps in financial markets. Working paper
, 2010
"... The contribution of this paper is two-fold. First we show how to estimate the volatility of high frequency log-returns where the estimates are not a affected by microstructure noise and the presence of Lévy-type jumps in prices. The second contribution focuses on the relationship between the number ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
The contribution of this paper is two-fold. First we show how to estimate the volatility of high frequency log-returns where the estimates are not a affected by microstructure noise and the presence of Lévy-type jumps in prices. The second contribution focuses on the relationship between the number of jumps and the volatility of log-returns of the SPY, which is the fund that tracks the S&P 500. We employ SPY high frequency data (minute-by-minute) to obtain estimates of the volatility of the SPY log-returns to show that: (i) The number of jumps in the SPY is an important variable in explaining the daily volatility of the SPY log-returns; (ii) The number of jumps in the SPY prices has more explanatory power with respect to daily volatility than other variables based on: volume, number of trades, open and close, and other jump activity measures based on Bipower Variation; (iii) The number of jumps in the SPY prices has a similar explanatory power to that of the VIX, and slightly less explanatory power than measures based on high and low prices, when it comes to explaining volatility; (iv) Forecasts of the average number of jumps are important variables when producing monthly volatility forecasts and, furthermore, they contain information that is not impounded in the VIX.
Forecasting the European Credit Cycle using Macroeconomic Variables
, 2011
"... All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. ..."
Abstract
- Add to MetaCart
All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
and Applications
, 2014
"... The dissertation consists of four chapters that concern topics on copulas for high dimensions. Chapter 1 proposes a new general model for high dimension joint distri-butions of asset returns that utilizes high frequency data and copulas. The depen-dence between returns is decomposed into linear and ..."
Abstract
- Add to MetaCart
The dissertation consists of four chapters that concern topics on copulas for high dimensions. Chapter 1 proposes a new general model for high dimension joint distri-butions of asset returns that utilizes high frequency data and copulas. The depen-dence between returns is decomposed into linear and nonlinear components, which enables the use of high frequency data to accurately measure and forecast linear dependence, and the use of a new class of copulas designed to capture nonlinear de-pendence among the resulting linearly uncorrelated residuals. Estimation of the new class of copulas is conducted using a composite likelihood, making the model feasible even for hundreds of variables. A realistic simulation study verifies that multistage estimation with composite likelihood results in small loss in efficiency and large gain in computation speed. Chapter 2, which is co-authored with Professor Andrew Patton, presents new models for the dependence structure, or copula, of economic variables based on a factor structure. The proposed models are particularly attractive for high dimen-
for Financial Returns and Realized Volatility
"... Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nut ..."
Abstract
- Add to MetaCart
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. www.econstor.eu- FinMaP-Working Paper
Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data
"... Volatility clustering is a well-known stylized feature of financial asset returns. In this paper, we investigate the asymmetric pattern of volatility clustering on both the stock and foreign exchange rate markets. To this end, we employ copula-based semi-parametric univariate time-series models that ..."
Abstract
- Add to MetaCart
Volatility clustering is a well-known stylized feature of financial asset returns. In this paper, we investigate the asymmetric pattern of volatility clustering on both the stock and foreign exchange rate markets. To this end, we employ copula-based semi-parametric univariate time-series models that accommodate the clusters of both large and small volatilities in the analysis. Using daily realized volatilities of the individual company stocks, stock indices and foreign exchange rates constructed from high frequency data, we find that volatility clustering is strongly asymmetric in the sense that clusters of large volatilities tend to be much stronger than those of small volatilities. In addition, the asymmetric pattern of volatility clusters continues to be visible even when the clusters are allowed to be changing over time, and the volatility clusters themselves remain persistent even after forty days.
Journal of Financial Econometrics, 2008, 1–35 Are There Structural Breaks in Realized Volatility?
, 2008
"... Constructed from high-frequency data, realized volatility (RV) provides an accurate estimate of the unobserved volatility of financial markets. This paper uses a Bayesian approach to investigate the evidence for structural breaks in reduced form time-series models of RV. We focus on the popular hete ..."
Abstract
- Add to MetaCart
Constructed from high-frequency data, realized volatility (RV) provides an accurate estimate of the unobserved volatility of financial markets. This paper uses a Bayesian approach to investigate the evidence for structural breaks in reduced form time-series models of RV. We focus on the popular heterogeneous autoregressive (HAR) models of the logarithm of realized volatility. Using Monte Carlo simulations we demonstrate that our estimation approach is effective in identifying and dating structural breaks. Applied to daily S&P 500 data from 1993-2004, we find strong evidence of a structural break in early 1997. The main effect of the break is a reduction in the variance of log-volatility. The evidence of a break is robust to different models including a GARCH specification for the conditional variance of log(RV). ( JEL: C22, C11, G10)