Results 1  10
of
60
Bounded geometries, fractals, and lowdistortion embeddings
"... The doubling constant of a metric space (X; d) is thesmallest value * such that every ball in X can be covered by * balls of half the radius. The doubling dimension of X isthen defined as dim(X) = log2 *. A metric (or sequence ofmetrics) is called doubling precisely when its doubling dimension is ..."
Abstract

Cited by 154 (31 self)
 Add to MetaCart
The doubling constant of a metric space (X; d) is thesmallest value * such that every ball in X can be covered by * balls of half the radius. The doubling dimension of X isthen defined as dim(X) = log2 *. A metric (or sequence ofmetrics) is called doubling precisely when its doubling dimension is bounded. This is a robust class of metric spaceswhich contains many families of metrics that occur in applied settings.We give tight bounds for embedding doubling metrics into (lowdimensional) normed spaces. We consider bothgeneral doubling metrics, as well as more restricted families such as those arising from trees, from graphs excludinga fixed minor, and from snowflaked metrics. Our techniques include decomposition theorems for doubling metrics, andan analysis of a fractal in the plane due to Laakso [21]. Finally, we discuss some applications and point out a centralopen question regarding dimensionality reduction in L2.
Meridian: A Lightweight Network Location Service without Virtual Coordinates
 In SIGCOMM
, 2005
"... This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for diss ..."
Abstract

Cited by 139 (7 self)
 Add to MetaCart
This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for dissemination. We show how this framework can be used to address three commonly encountered problems, namely, closest node discovery, central leader election, and locating nodes that satisfy target latency constraints in largescale distributed systems without having to compute absolute coordinates. We show analytically that the framework is scalable with logarithmic convergence when Internet latencies are modeled as a growthconstrained metric, a lowdimensional Euclidean metric, or a metric of low doubling dimension. Large scale simulations, based on latency measurements from 6.25 million nodepairs as well as an implementation deployed on PlanetLab show that the framework is accurate and effective.
Fast construction of nets in lowdimensional metrics and their applications
 SIAM Journal on Computing
, 2006
"... We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This datastructure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, wellseparated pair decomposition, s ..."
Abstract

Cited by 98 (10 self)
 Add to MetaCart
We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This datastructure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, wellseparated pair decomposition, spanner construction, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near linear and the space being used is linear. 1
Measured descent: A new embedding method for finite metrics
 In Proc. 45th FOCS
, 2004
"... We devise a new embedding technique, which we call measured descent, based on decomposing a metric space locally, at varying speeds, according to the density of some probability measure. This provides a refined and unified framework for the two primary methods of constructing Fréchet embeddings for ..."
Abstract

Cited by 84 (26 self)
 Add to MetaCart
We devise a new embedding technique, which we call measured descent, based on decomposing a metric space locally, at varying speeds, according to the density of some probability measure. This provides a refined and unified framework for the two primary methods of constructing Fréchet embeddings for finite metrics, due to [Bourgain, 1985] and [Rao, 1999]. We prove that any npoint metric space (X, d) embeds in Hilbert space with distortion O ( √ αX · log n), where αX is a geometric estimate on the decomposability of X. As an immediate corollary, we obtain an O ( √ (log λX)log n) distortion embedding, where λX is the doubling constant of X. Since λX ≤ n, this result recovers Bourgain’s theorem, but when the metric X is, in a sense, “lowdimensional, ” improved bounds are achieved. Our embeddings are volumerespecting for subsets of arbitrary size. One consequence is the existence of (k, O(log n)) volumerespecting embeddings for all 1 ≤ k ≤ n, which is the best possible, and answers positively a question posed by U. Feige. Our techniques are also used to answer positively a question of Y. Rabinovich, showing that any weighted npoint planar graph O(log n) embeds in ℓ∞ with O(1) distortion. The O(log n) bound on the dimension is optimal, and improves upon the previously known bound of O((log n) 2). 1
Complex Networks and Decentralized Search Algorithms
 In Proceedings of the International Congress of Mathematicians (ICM
, 2006
"... The study of complex networks has emerged over the past several years as a theme spanning many disciplines, ranging from mathematics and computer science to the social and biological sciences. A significant amount of recent work in this area has focused on the development of random graph models that ..."
Abstract

Cited by 73 (1 self)
 Add to MetaCart
The study of complex networks has emerged over the past several years as a theme spanning many disciplines, ranging from mathematics and computer science to the social and biological sciences. A significant amount of recent work in this area has focused on the development of random graph models that capture some of the qualitative properties observed in largescale network data; such models have the potential to help us reason, at a general level, about the ways in which realworld networks are organized. We survey one particular line of network research, concerned with smallworld phenomena and decentralized search algorithms, that illustrates this style of analysis. We begin by describing a wellknown experiment that provided the first empirical basis for the "six degrees of separation" phenomenon in social networks; we then discuss some probabilistic network models motivated by this work, illustrating how these models lead to novel algorithmic and graphtheoretic questions, and how they are supported by recent empirical studies of large social networks.
Bypassing the embedding: Algorithms for lowdimensional metrics
 In Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC
, 2004
"... The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into l ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into low dimensional Euclidean spaces, they would inherit several algorithmic and structural properties of the Euclidean spaces. Unfortunately however, such a restriction on dimension does not suffice to guarantee embeddibility in a normed space. In this paper we explore the option of bypassing the embedding. In particular we show the following for low dimensional metrics: • Quasipolynomial time (1+ɛ)approximation algorithm for various optimization problems such as TSP, kmedian and facility location. • (1 + ɛ)approximate distance labeling scheme with optimal label length. • (1+ɛ)stretch polylogarithmic storage routing scheme.
Distance Estimation and Object Location via Rings of Neighbors
 In 24 th Annual ACM Symposium on Principles of Distributed Computing (PODC
, 2005
"... We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Fo ..."
Abstract

Cited by 64 (4 self)
 Add to MetaCart
We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Focusing on metrics of low doubling dimension, we approach these problems with a common technique called rings of neighbors, which refers to a sparse distributed data structure that underlies all our constructions. Apart from improving the previously known bounds for these problems, our contributions include extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently become a useful algorithmic concept in the theoretical computer science literature. 1
Embeddings Of Gromov Hyperbolic Spaces
 Geom. Funct. Anal
"... . It is shown that a Gromov hyperbolic geodesic metric space X with bounded growth at some scale is roughly quasiisometric to a convex subset of hyperbolic space. If one is allowed to rescale the metric of X by some positive constant, then there is an embedding where distances are distorted by at m ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
. It is shown that a Gromov hyperbolic geodesic metric space X with bounded growth at some scale is roughly quasiisometric to a convex subset of hyperbolic space. If one is allowed to rescale the metric of X by some positive constant, then there is an embedding where distances are distorted by at most an additive constant. Another embedding theorem states that any ffi hyperbolic metric space embeds isometrically into a complete geodesic ffi hyperbolic space. The relation of a Gromov hyperbolic space to its boundary is further investigated. One of the applications is a characterization of the hyperbolic plane up to rough quasiisometries. 1. Introduction The study of Gromov hyperbolic spaces has been largely motivated and dominated by questions about Gromov hyperbolic groups. This paper studies the geometry of Gromov hyperbolic spaces without reference to any group or group action. One of our main theorems is 1.1. Embedding Theorem. Let X be a Gromov hyperbolic geodesic metric spa...
Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces
"... A metric space X has Markov type 2, if for any reversible finitestate Markov chain {Zt} (with Z0 chosen according to the stationary distribution) and any map f from the state space to X, the distance Dt from f(Z0) to f(Zt) satisfies E(D 2 t) ≤ K 2 t E(D 2 1) for some K = K(X) < ∞. This notion is d ..."
Abstract

Cited by 41 (24 self)
 Add to MetaCart
A metric space X has Markov type 2, if for any reversible finitestate Markov chain {Zt} (with Z0 chosen according to the stationary distribution) and any map f from the state space to X, the distance Dt from f(Z0) to f(Zt) satisfies E(D 2 t) ≤ K 2 t E(D 2 1) for some K = K(X) < ∞. This notion is due to K. Ball (1992), who showed its importance for the Lipschitz extension problem. However until now, only Hilbert space (and its biLipschitz equivalents) were known to have Markov type 2. We show that every Banach space with modulus of smoothness of power type 2 (in particular, Lp for p> 2) has Markov type 2; this proves a conjecture of Ball. We also show that trees, hyperbolic groups and simply connected Riemannian manifolds of pinched negative curvature have Markov type 2. Our results are applied to settle several conjectures on Lipschitz extensions and embeddings. In particular, we answer a question posed by Johnson and Lindenstrauss in 1982, by showing that for 1 < q < 2 < p < ∞, any Lipschitz mapping from a subset of Lp to Lq has a Lipschitz extension defined on all of Lp. 1