Results 1  10
of
60
Learning to Search: Functional Gradient Techniques for Imitation Learning
 Autonomous Robots
, 2009
"... Programming robot behavior remains a challenging task. While it is often easy to abstractly define or even demonstrate a desired behavior, designing a controller that embodies the same behavior is difficult, time consuming, and ultimately expensive. The machine learning paradigm offers the promise o ..."
Abstract

Cited by 44 (18 self)
 Add to MetaCart
Programming robot behavior remains a challenging task. While it is often easy to abstractly define or even demonstrate a desired behavior, designing a controller that embodies the same behavior is difficult, time consuming, and ultimately expensive. The machine learning paradigm offers the promise of enabling “programming by demonstration ” for developing highperformance robotic systems. Unfortunately, many “behavioral cloning ” (Bain & Sammut, 1995; Pomerleau, 1989; LeCun et al., 2006) approaches that utilize classical tools of supervised learning (e.g. decision trees, neural networks, or support vector machines) do not fit the needs of modern robotic systems. These systems are often built atop sophisticated planning algorithms that efficiently reason far into the future; consequently, ignoring these planning algorithms in lieu of a supervised learning approach often leads to myopic and poorquality robot performance. While planning algorithms have shown success in many realworld applications ranging from legged locomotion (Chestnutt et al., 2003) to outdoor unstructured navigation (Kelly et al., 2004; Stentz, 2009), such algorithms rely on fully specified cost functions that map sensor readings and environment models to quantifiable costs. Such cost functions are usually manually designed and programmed. Recently, a set of techniques has been developed that explore learning these functions from expert human demonstration.
Bundle methods for machine learning
 JMLR
"... We present a globally convergent method for regularized risk minimization problems. Our method applies to Support Vector estimation, regression, Gaussian Processes, and any other regularized risk minimization setting which leads to a convex optimization problem. SVMPerf can be shown to be a special ..."
Abstract

Cited by 40 (11 self)
 Add to MetaCart
We present a globally convergent method for regularized risk minimization problems. Our method applies to Support Vector estimation, regression, Gaussian Processes, and any other regularized risk minimization setting which leads to a convex optimization problem. SVMPerf can be shown to be a special case of our approach. In addition to the unified framework we present tight convergence bounds, which show that our algorithm converges in O(1/ɛ) steps to ɛ precision for general convex problems and in O(log(1/ɛ)) steps for continuously differentiable problems. We demonstrate in experiments the performance of our approach. 1
Bundle Methods for Regularized Risk Minimization
"... A wide variety of machine learning problems can be described as minimizing a regularized risk functional, with different algorithms using different notions of risk and different regularizers. Examples include linear Support Vector Machines (SVMs), Gaussian Processes, Logistic Regression, Conditional ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
A wide variety of machine learning problems can be described as minimizing a regularized risk functional, with different algorithms using different notions of risk and different regularizers. Examples include linear Support Vector Machines (SVMs), Gaussian Processes, Logistic Regression, Conditional Random Fields (CRFs), and Lasso amongst others. This paper describes the theory and implementation of a scalable and modular convex solver which solves all these estimation problems. It can be parallelized on a cluster of workstations, allows for datalocality, and can deal with regularizers such as L1 and L2 penalties. In addition to the unified framework we present tight convergence bounds, which show that our algorithm converges in O(1/ɛ) steps to ɛ precision for general convex problems and in O(log(1/ɛ)) steps for continuously differentiable problems. We demonstrate the performance of our general purpose solver on a variety of publicly available datasets.
Slow learners are fast
 In NIPS
, 2009
"... Online learning algorithms have impressive convergence properties when it comes to risk minimization and convex games on very large problems. However, they are inherently sequential in their design which prevents them from taking advantage of modern multicore architectures. In this paper we prove t ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
Online learning algorithms have impressive convergence properties when it comes to risk minimization and convex games on very large problems. However, they are inherently sequential in their design which prevents them from taking advantage of modern multicore architectures. In this paper we prove that online learning with delayed updates converges well, thereby facilitating parallel online learning. 1
NoRegret Reductions for Imitation Learning and Structured Prediction
 In AISTATS
, 2011
"... Sequential prediction problems such as imitation learning, where future observations depend on previous predictions (actions), violate the common i.i.d. assumptions made in statistical learning. This leads to poor performance in theory and often in practice. Some recent approaches (Daumé III et al., ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
Sequential prediction problems such as imitation learning, where future observations depend on previous predictions (actions), violate the common i.i.d. assumptions made in statistical learning. This leads to poor performance in theory and often in practice. Some recent approaches (Daumé III et al., 2009; Ross and Bagnell, 2010) provide stronger guarantees in this setting, but remain somewhat unsatisfactory as they train either nonstationary or stochastic policies and require a large number of iterations. In this paper, we propose a new iterative algorithm, which trains a stationary deterministic policy, that can be seen as a no regret algorithm in an online learning setting. We show that any such no regret algorithm, combined with additional reduction assumptions, must find a policy with good performance under the distribution of observations it induces in such sequential settings. We demonstrate that this new approach outperforms previous approaches on two challenging imitation learning problems and a benchmark sequence labeling problem. 1
Parsing Natural Scenes and Natural Language with Recursive Neural Networks
"... Recursive structure is commonly found in the inputs of different modalities such as natural scene images or natural language sentences. Discovering this recursive structure helps us to not only identify the units that an image or sentence contains but also how they interact to form a whole. We intro ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
Recursive structure is commonly found in the inputs of different modalities such as natural scene images or natural language sentences. Discovering this recursive structure helps us to not only identify the units that an image or sentence contains but also how they interact to form a whole. We introduce a maxmargin structure prediction architecture based on recursive neural networks that can successfully recover such structure both in complex scene images as well as sentences. The same algorithm can be used both to provide a competitive syntactic parser for natural language sentences from the Penn Treebank and to outperform alternative approaches for semantic scene segmentation, annotation and classification. For segmentation and annotation our algorithm obtains a new level of stateoftheart performance on the Stanford background dataset (78.1%). The features from the image parse tree outperform Gist descriptors for scene classification by 4%. 1.
On the Generalization Ability of Online Strongly Convex Programming Algorithms
"... This paper examines the generalization properties of online convex programming algorithms when the loss function is Lipschitz and strongly convex. Our main result is a sharp bound, that holds with high probability, on the excess risk of the output of an online algorithm in terms of the average regre ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
This paper examines the generalization properties of online convex programming algorithms when the loss function is Lipschitz and strongly convex. Our main result is a sharp bound, that holds with high probability, on the excess risk of the output of an online algorithm in terms of the average regret. This allows one to use recent algorithms with logarithmic cumulative regret guarantees to achieve fast convergence rates for the excess risk with high probability. As a corollary, we characterize the convergence rate of PEGASOS (with high probability), a recently proposed method for solving the SVM optimization problem. 1
Directional Associative Markov Network for 3D Point Cloud Classification
"... In this paper we address the problem of automated three dimensional point cloud interpretation. This problem is important for various tasks from environment modeling to obstacle avoidance for autonomous robot navigation. In addition to locally extracted features, classifiers need to utilize contextu ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
In this paper we address the problem of automated three dimensional point cloud interpretation. This problem is important for various tasks from environment modeling to obstacle avoidance for autonomous robot navigation. In addition to locally extracted features, classifiers need to utilize contextual information in order to perform well. A popular approach to account for context is to utilize the Markov Random Field framework. One recent variant that has successfully been used for the problem considered is the Associative Markov Network (AMN). We extend the AMN model to learn directionality in the clique potentials, resulting in a new anisotropic model that can be efficiently learned using the subgradient method. We validate the proposed approach using data collected from different range sensors and show better performance against standard AMN and Support Vector Machine algorithms. 1.
Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks
"... Natural language parsing has typically been done with small sets of discrete categories such as NP and VP, but this representation does not capture the full syntactic nor semantic richness of linguistic phrases, and attempts to improve on this by lexicalizing phrases only partly address the problem ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
Natural language parsing has typically been done with small sets of discrete categories such as NP and VP, but this representation does not capture the full syntactic nor semantic richness of linguistic phrases, and attempts to improve on this by lexicalizing phrases only partly address the problem at the cost of huge feature spaces and sparseness. To address this, we introduce a recursive neural network architecture for jointly parsing natural language and learning vector space representations for variablesized inputs. At the core of our architecture are contextsensitive recursive neural networks (CRNN). These networks can induce distributed feature representations for unseen phrases and provide syntactic information to accurately predict phrase structure trees. Most excitingly, the representation of each phrase also captures semantic information: For instance, the phrases “decline to comment” and “would not disclose the terms ” are close by in the induced embedding space. Our current system achieves an unlabeled bracketing Fmeasure of 92.1% on the Wall Street Journal dataset for sentences up to length 15. 1
Onboard Contextual Classification of 3D Point Clouds with Learned Highorder Markov Random Fields
"... Abstract — Contextual reasoning through graphical models such as Markov Random Fields often show superior performance against local classifiers in many domains. Unfortunately, this performance increase is often at the cost of time consuming, memory intensive learning and slow inference at testing ti ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
Abstract — Contextual reasoning through graphical models such as Markov Random Fields often show superior performance against local classifiers in many domains. Unfortunately, this performance increase is often at the cost of time consuming, memory intensive learning and slow inference at testing time. Structured prediction for 3D point cloud classification is one example of such an application. In this paper we present two contributions. First we show how efficient learning of a random field with higherorder cliques can be achieved using subgradient optimization. Second, we present a context approximation using random fields with highorder cliques designed to make this model usable online, onboard a mobile vehicle for environment modeling. We obtained results with the mobile vehicle on a variety of terrains, at 1/3 Hz for a map 25 × 50 meters and a vehicle speed of 12 m/s. I.