Results 1 
2 of
2
Definability of Languages by Generalized FirstOrder Formulas over (N
 In 23rd Symp. on Theoretical Aspects of Comp. Sci. (STACS’06
, 2006
"... Abstract. We consider an extension of firstorder logic by modular quantifiers of a fixed modulus q. Drawing on collapse results from finite model theory and techniques of finite semigroup theory, we show that if the only available numerical predicate is addition, then sentences in this logic cannot ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. We consider an extension of firstorder logic by modular quantifiers of a fixed modulus q. Drawing on collapse results from finite model theory and techniques of finite semigroup theory, we show that if the only available numerical predicate is addition, then sentences in this logic cannot define the set of bit strings in which the number of 1’s is divisible by a prime p that does not divide q. More generally, we completely characterize the regular languages definable in this logic. The corresponding statement, with addition replaced by arbitrary numerical predicates, is equivalent to the conjectured separation of the circuit complexity class ACC from NC 1. Thus our theorem can be viewed as proving a highly uniform version of the conjecture. 1
Sharply bounded alternation and quasilinear time
 Theory of Computing Systems
, 1998
"... We de ne the sharply bounded hierarchy, SBH (QL), a hierarchy of classes within P, using quasilineartime computation and quanti cation over strings of length log n. It generalizes the limited nondeterminism hierarchy introduced by Buss and Goldsmith, while retaining the invariance properties. The n ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We de ne the sharply bounded hierarchy, SBH (QL), a hierarchy of classes within P, using quasilineartime computation and quanti cation over strings of length log n. It generalizes the limited nondeterminism hierarchy introduced by Buss and Goldsmith, while retaining the invariance properties. The new hierarchy hasseveral alternative characterizations. We de ne both SBH (QL) and its corresponding hierarchy of function classes, ql and present a variety of problems in these classes, including mcomplete problems for each class in SBH (QL). We discuss the structure of the hierarchy, and show that determining its precise relationship to deterministic time classes can imply P 6 = PSPACE. We present characterizations of SBH (QL) relations based on alternating Turing machines and on rstorder de nability, aswell as recursiontheoretic characterizations of function classes corresponding to SBH (QL).