Results 1 
4 of
4
Mathematics by Experiment: Plausible Reasoning in the 21st Century, extended second edition, A K
 2008. EXPERIMENTATION AND COMPUTATION 19
, 2008
"... If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. (Kurt Gödel, 1951) Paper Revised 09–09–04 This paper is an extended version of a presentation made at ICME10, related work is elab ..."
Abstract

Cited by 56 (21 self)
 Add to MetaCart
If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. (Kurt Gödel, 1951) Paper Revised 09–09–04 This paper is an extended version of a presentation made at ICME10, related work is elaborated in references [1–7]. 1 I shall generally explore experimental and heuristic mathematics and give (mostly) accessible, primarily visual and symbolic, examples. The emergence of powerful mathematical computing environments like Maple and Matlab, the growing
FROM TROTSKY to GÖDEL: a LIFE
, 2004
"... If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. ..."
Abstract
 Add to MetaCart
If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics.
1 MY INTENTIONS IN THIS TALK
, 2004
"... If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. ..."
Abstract
 Add to MetaCart
If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics.
What’s experimental about experimental mathematics?
, 2008
"... From a philosophical viewpoint, mathematics has often and traditionally been distinguished from the natural sciences by its formal nature and emphasis on deductive reasoning. Experiments — one of the corner stones of most modern natural science — have had no role to play in mathematics. However, dur ..."
Abstract
 Add to MetaCart
(Show Context)
From a philosophical viewpoint, mathematics has often and traditionally been distinguished from the natural sciences by its formal nature and emphasis on deductive reasoning. Experiments — one of the corner stones of most modern natural science — have had no role to play in mathematics. However, during the last three decades, high speed computers and sophisticated software packages such as Maple and Mathematica have entered into the domain of pure mathematics, bringing with them a new experimental flavor. They have opened up a new approach in which computerbased tools are used to experiment with the mathematical objects in a dialogue with more traditional methods of formal rigorous proof. At present, a subdiscipline of experimental mathematics is forming with its own research problems, methodology, conferences, and journals. In this paper, I first outline the role of the computer in the mathematical experiment and briefly describe the impact of high speed computing on mathematical research within the emerging subdiscipline of experimental mathematics. I then consider in more detail the epistemological claims put forward within experimental mathematics and comment on some of the discussions that experimental mathematics has provoked within the mathematical community in recent years. In the second part of the paper, I suggest the notion of exploratory experimentation as a possible framework for understanding experimental mathematics. This is illustrated by discussing the socalled PSLQ algorithm.