Results 11  20
of
646
General methods for monitoring convergence of iterative simulations
 J. Comput. Graph. Statist
, 1998
"... We generalize the method proposed by Gelman and Rubin (1992a) for monitoring the convergence of iterative simulations by comparing between and within variances of multiple chains, in order to obtain a family of tests for convergence. We review methods of inference from simulations in order to develo ..."
Abstract

Cited by 270 (8 self)
 Add to MetaCart
We generalize the method proposed by Gelman and Rubin (1992a) for monitoring the convergence of iterative simulations by comparing between and within variances of multiple chains, in order to obtain a family of tests for convergence. We review methods of inference from simulations in order to develop convergencemonitoring summaries that are relevant for the purposes for which the simulations are used. We recommend applying a battery of tests for mixing based on the comparison of inferences from individual sequences and from the mixture of sequences. Finally, we discuss multivariate analogues, for assessing convergence of several parameters simultaneously.
Using simulation methods for Bayesian econometric models: Inference, development and communication
 Econometric Review
, 1999
"... This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a ..."
Abstract

Cited by 257 (15 self)
 Add to MetaCart
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators. A theme of the paper is the practicality of subjective Bayesian methods. To this end, the paper describes publicly available software for Bayesian inference, model development, and communication and provides illustrations using two simple econometric models. *This paper was originally prepared for the Australasian meetings of the Econometric Society in Melbourne, Australia,
An Introduction to MCMC for Machine Learning
, 2003
"... This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of ..."
Abstract

Cited by 247 (2 self)
 Add to MetaCart
This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of this special issue. Lastly, it discusses new interesting research horizons.
Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation
 American Political Science Review
, 2000
"... We propose a remedy for the discrepancy between the way political scientists analyze data with missing values and the recommendations of the statistics community. Methodologists and statisticians agree that "multiple imputation" is a superior approach to the problem of missing data scatter ..."
Abstract

Cited by 237 (43 self)
 Add to MetaCart
We propose a remedy for the discrepancy between the way political scientists analyze data with missing values and the recommendations of the statistics community. Methodologists and statisticians agree that "multiple imputation" is a superior approach to the problem of missing data scattered through one's explanatory and dependent variables than the methods currently used in applied data analysis. The reason for this discrepancy lies with the fact that the computational algorithms used to apply the best multiple imputation models have been slow, difficult to implement, impossible to run with existing commercial statistical packages, and demanding of considerable expertise. In this paper, we adapt an existing algorithm, and use it to implement a generalpurpose, multiple imputation model for missing data. This algorithm is considerably faster and easier to use than the leading method recommended in the statistics literature. We also quantify the risks of current missing data practices, ...
Posterior Predictive Assessment of Model Fitness Via Realized Discrepancies
 Statistica Sinica
, 1996
"... Abstract: This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The B ..."
Abstract

Cited by 210 (32 self)
 Add to MetaCart
Abstract: This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The Bayesian formulation facilitates the construction and calculation of a meaningful reference distribution not only for any (classical) statistic, but also for any parameterdependent “statistic ” or discrepancy. The latter allows us to propose the realized discrepancy assessment of model fitness, which directly measures the true discrepancy between data and the posited model, for any aspect of the model which we want to explore. The computation required for the realized discrepancy assessment is a straightforward byproduct of the posterior simulation used for the original Bayesian analysis. We illustrate with three applied examples. The first example, which serves mainly to motivate the work, illustrates the difficulty of classical tests in assessing the fitness of a Poisson model to a positron emission tomography image that is constrained to be nonnegative. The second and third examples illustrate the details of the posterior predictive approach in two problems: estimation in a model with inequality constraints on the parameters, and estimation in a mixture model. In all three examples, standard test statistics (either a χ 2 or a likelihood ratio) are not pivotal: the difficulty is not just how to compute the reference distribution for the test, but that in the classical framework no such distribution exists, independent of the unknown model parameters. Key words and phrases: Bayesian pvalue, χ 2 test, discrepancy, graphical assessment, mixture model, model criticism, posterior predictive pvalue, prior predictive
A Monte Carlo Approach to Nonnormal and Nonlinear StateSpace Modeling
 Theory and Methods
, 1992
"... ..."
Learning Dynamic Bayesian Networks
 In Adaptive Processing of Sequences and Data Structures, Lecture Notes in Artificial Intelligence
, 1998
"... Suppose we wish to build a model of data from a finite sequence of ordered observations, {Y1, Y2,..., Yt}. In most realistic scenarios, from modeling stock prices to physiological data, the observations are not related deterministically. Furthermore, there is added uncertainty resulting from the li ..."
Abstract

Cited by 142 (0 self)
 Add to MetaCart
Suppose we wish to build a model of data from a finite sequence of ordered observations, {Y1, Y2,..., Yt}. In most realistic scenarios, from modeling stock prices to physiological data, the observations are not related deterministically. Furthermore, there is added uncertainty resulting from the limited size of our data set and any mismatch between our model and the true process. Probability theory provides a powerful tool for expressing both randomness and uncertainty in our model [23]. We can express the uncertainty in our prediction of the future outcome Yt+l via a probability density P(Yt+llY1,..., Yt). Such a probability density can then be used to make point predictions, define error bars, or make decisions that are expected to minimize some loss function. This chapter presents a probabilistic framework for learning models of temporal data. We express these models using the Bayesian network formalism (a.k.a. probabilistic graphical models or belief networks)a marriage of probability theory and graph theory in which dependencies between variables are expressed graphically. The graph not only allows the user to understand which variables