Results 1  10
of
111
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2111 (62 self)
 Add to MetaCart
(Show Context)
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an αβswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an αexpansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
A taxonomy and evaluation of dense twoframe stereo correspondence algorithms
 International Journal of Computer Vision
, 2002
"... Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe ..."
Abstract

Cited by 1516 (23 self)
 Add to MetaCart
Abstract. Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, twoframe stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a standalone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today’s bestperforming stereo algorithms.
Computing Visual Correspondence with Occlusions using Graph Cuts
"... Several new algorithms for visual correspondence based on graph cuts [7, 14, 17] have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a ..."
Abstract

Cited by 358 (11 self)
 Add to MetaCart
(Show Context)
Several new algorithms for visual correspondence based on graph cuts [7, 14, 17] have recently been developed. While these methods give very strong results in practice, they do not handle occlusions properly. Specifically, they treat the two input images asymmetrically, and they do not ensure that a pixel corresponds to at most one pixel in the other image. In this paper, we present a new method which properly addresses occlusions, while preserving the advantages of graph cut algorithms. We give experimental results for stereo as well as motion, which demonstrate that our method performs well both at detecting occlusions and computing disparities.
Minimizing nonsubmodular functions with graph cuts  a review
 TPAMI
, 2007
"... Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there is an accepted view within the computer vision communi ..."
Abstract

Cited by 150 (8 self)
 Add to MetaCart
Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there is an accepted view within the computer vision community that graph cuts can only be used for optimizing a limited class of MRF energies (e.g. submodular functions). In this survey we review some results that show that graph cuts can be applied to a much larger class of energy functions (in particular, nonsubmodular functions). While these results are wellknown in the optimization community, to our knowledge they were not used in the context of computer vision and MRF optimization. We demonstrate the relevance of these results to vision on the problem of binary texture restoration.
Handling Occlusions in Dense Multiview Stereo
, 2001
"... While stereo matching was originally formulated as the recovery of 3D shape from a pair of images, it is now generally recognized that using more than two images can dramatically improve the quality of the reconstruction. Unfortunately, as more images are added, the prevalence of semioccluded region ..."
Abstract

Cited by 142 (10 self)
 Add to MetaCart
(Show Context)
While stereo matching was originally formulated as the recovery of 3D shape from a pair of images, it is now generally recognized that using more than two images can dramatically improve the quality of the reconstruction. Unfortunately, as more images are added, the prevalence of semioccluded regions (pixels visible in some but not all images) also increases. In this paper, we propose some novel techniques to deal with this problem. Our first idea is to use a combination of shiftable windows and a dynamically selected subset of the neighboring images to do the matches. Our second idea is to explicitly label occluded pixels within a global energy minimization framework, and to reason about visibility within this framework so that only truly visible pixels are matched. Experimental results show a dramatic improvement using the first idea over conventional multibaseline stereo, especially when used in conjunction with a global energy minimization technique. These results also show that explicit occlusion labeling and visibility reasoning do help, but not significantly, if the spatial and temporal selection is applied first.
A ConstantFactor Approximation Algorithm for the Multicommodity RentorBuy Problem
"... ... Recent work on buyatbulk network design has concentrated on the special case where all sinks are identical; existing constantfactor approximation algorithms for this special case make crucial use of the assumption that all commodities ship flow to the same sink vertex and do not obviously ext ..."
Abstract

Cited by 101 (10 self)
 Add to MetaCart
(Show Context)
... Recent work on buyatbulk network design has concentrated on the special case where all sinks are identical; existing constantfactor approximation algorithms for this special case make crucial use of the assumption that all commodities ship flow to the same sink vertex and do not obviously extend to the multicommodity rentorbuy problem. Prior to our work, the best heuristics for the multicommodity rentorbuy problem achieved only logarithmic performance guarantees and relied on the machinery of relaxed metrical task systems or of metric embeddings. By contrast, we solve the network design problem directly via a novel primaldual algorithm.
Approximate labeling via graphcuts based on linear programming
 In Pattern Analysis and Machine Intelligence
, 2007
"... A new framework is presented for both understanding and developing graphcut based combinatorial algorithms suitable for the approximate optimization of a very wide class of MRFs that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of line ..."
Abstract

Cited by 75 (9 self)
 Add to MetaCart
(Show Context)
A new framework is presented for both understanding and developing graphcut based combinatorial algorithms suitable for the approximate optimization of a very wide class of MRFs that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of stateoftheart techniques like the αexpansion algorithm, which is included merely as a special case. Moreover, contrary to αexpansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, e.g. even for MRFs with nonmetric potentials. In addition, they are capable of providing perinstance suboptimality bounds in all occasions, including discrete Markov Random Fields with an arbitrary potential function. These bounds prove to be very tight in practice (i.e. very close to 1), which means that the resulting solutions are almost optimal. Our algorithms ’ effectiveness is demonstrated by presenting experimental results on a variety of low level vision tasks, such as stereo matching, image restoration, image completion and optical flow estimation, as well as on synthetic problems.
Dense Image Registration through MRFs and Efficient Linear Programming
, 2008
"... In this paper we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context the registration problem is formulated using a discrete Markov Random Field objective function. First, towards dimensionality re ..."
Abstract

Cited by 73 (35 self)
 Add to MetaCart
In this paper we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context the registration problem is formulated using a discrete Markov Random Field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level a multiscale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.
Fusion Moves for Markov Random Field Optimization
"... The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combi ..."
Abstract

Cited by 70 (6 self)
 Add to MetaCart
(Show Context)
The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph cut based algorithms (socalled QPBOgraph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph cut approaches, which allows them to be used as building block within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads; 2) for fast MRF optimization by combining cheaptocompute solutions; and 3) for the optimization of highly nonconvex continuouslabeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).