Results 1  10
of
16
Learning Bayesian Networks from Data: An InformationTheory Based Approach
"... This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional indepe ..."
Abstract

Cited by 93 (5 self)
 Add to MetaCart
This paper provides algorithms that use an informationtheoretic analysis to learn Bayesian network structures from data. Based on our threephase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
Construction of Bayesian Network Structures From Data: A Brief Survey and an Efficient Algorithm
, 1995
"... Previous algorithms for the recovery of Bayesian belief network structures from data have been either highly dependent on conditional independence (CI) tests, or have required on ordering on the nodes to be supplied by the user. We present an algorithm that integrates these two approaches: CI tests ..."
Abstract

Cited by 77 (8 self)
 Add to MetaCart
Previous algorithms for the recovery of Bayesian belief network structures from data have been either highly dependent on conditional independence (CI) tests, or have required on ordering on the nodes to be supplied by the user. We present an algorithm that integrates these two approaches: CI tests are used to generate an ordering on the nodes from the database, which is then used to recover the underlying Bayesian network structure using a nonCltestbased method. Results of the evaluation of the algorithm on a number of databases (e.g., ALARM, LED, and SOYBEAN) are presented. We also discuss some algorithm performance issues and open problems.
Learning Bayesian Networks from Data: An Efficient Approach Based on Information Theory
, 1997
"... This paper addresses the problem of learning Bayesian network structures from data by using an information theoretic dependency analysis approach. Based on our threephase construction mechanism, two efficient algorithms have been developed. One of our algorithms deals with a special case where the ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
This paper addresses the problem of learning Bayesian network structures from data by using an information theoretic dependency analysis approach. Based on our threephase construction mechanism, two efficient algorithms have been developed. One of our algorithms deals with a special case where the node ordering is given, the algorithm only require ) ( 2 N O CI tests and is correct given that the underlying model is DAGFaithful [Spirtes et. al., 1996]. The other algorithm deals with the general case and requires ) ( 4 N O conditional independence (CI) tests. It is correct given that the underlying model is monotone DAGFaithful (see Section 4.4). A system based on these algorithms has been developed and distributed through the Internet. The empirical results show that our approach is efficient and reliable. 1 Introduction The Bayesian network is a powerful knowledge representation and reasoning tool under conditions of uncertainty. A Bayesian network is a directed acyclic graph ...
A SINful approach to Gaussian graphical model selection
 Journal of Statistical Planning and Inference
"... Abstract. Multivariate Gaussian graphical models are defined in terms of Markov properties, i.e., conditional independences associated with the underlying graph. Thus, model selection can be performed by testing these conditional independences, which are equivalent to specified zeroes among certain ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
Abstract. Multivariate Gaussian graphical models are defined in terms of Markov properties, i.e., conditional independences associated with the underlying graph. Thus, model selection can be performed by testing these conditional independences, which are equivalent to specified zeroes among certain (partial) correlation coefficients. For concentration graphs, covariance graphs, acyclic directed graphs, and chain graphs (both LWF and AMP), we apply Fisher’s ztransformation, ˇ Sidák’s correlation inequality, and Holm’s stepdown procedure, to simultaneously test the multiple hypotheses obtained from the Markov properties. This leads to a simple method for model selection that controls the overall error rate for incorrect edge inclusion. In practice, we advocate partitioning the simultaneous pvalues into three disjoint sets, a significant set S, an indeterminate set I, and a nonsignificant set N. Then our SIN model selection method selects two graphs, a graph whose edges correspond to the union of S and I, and a more conservative graph whose edges correspond to S only. Prior information about the presence and/or absence of particular edges can be incorporated readily. 1.
Learning Causal Networks from Data: A survey and a new algorithm for recovering possibilistic causal networks
, 1997
"... Introduction Reasoning in terms of cause and effect is a strategy that arises in many tasks. For example, diagnosis is usually defined as the task of finding the causes (illnesses) from the observed effects (symptoms). Similarly, prediction can be understood as the description of a future plausible ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
Introduction Reasoning in terms of cause and effect is a strategy that arises in many tasks. For example, diagnosis is usually defined as the task of finding the causes (illnesses) from the observed effects (symptoms). Similarly, prediction can be understood as the description of a future plausible situation where observed effects will be in accordance with the known causal structure of the phenomenon being studied. Causal models are a summary of the knowledge about a phenomenon expressed in terms of causation. Many areas of the ap # This work has been partially supported by the Spanish Comission Interministerial de Ciencia y Tecnologia Project CICYTTIC96 0878. plied sciences (econometry, biomedics, engineering, etc.) have used such a term to refer to models that yield explanations, allow for prediction and facilitate planning and decision making. Causal reasoning can be viewed as inference guided by a causation theory. That kind of inference can be further specialised into induc
A new algorithm for maximum likelihood estimation in Gaussian graphical models for marginal independence
 In U. Kjærulff and C. Meek (Eds.), Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence
, 2003
"... Graphical models with bidirected edges (↔) represent marginal independence: the absence of an edge between two vertices indicates that the corresponding variables are marginally independent. In this paper, we consider maximum likelihood estimation in the case of continuous variables with a Gaussian ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
Graphical models with bidirected edges (↔) represent marginal independence: the absence of an edge between two vertices indicates that the corresponding variables are marginally independent. In this paper, we consider maximum likelihood estimation in the case of continuous variables with a Gaussian joint distribution, sometimes termed a covariance graph model. We present a new fitting algorithm which exploits standard regression techniques and establish its convergence properties. Moreover, we contrast our procedure to existing estimation algorithms. 1
Covariance Chains
 Bernoulli
, 2006
"... Covariance matrices which can be arranged in tridiagonal form are called covariance chains. They are used to clarify some issues of parameter equivalence and of independence equivalence for linear models in which a set of latent variables influences a set of observed variables. For this purpose, ort ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
Covariance matrices which can be arranged in tridiagonal form are called covariance chains. They are used to clarify some issues of parameter equivalence and of independence equivalence for linear models in which a set of latent variables influences a set of observed variables. For this purpose, orthogonal decompositions for covariance chains are derived first in explicit form. Covariance chains are also contrasted to concentration chains, for which estimation is explicit and simple. For this purpose, maximumlikelihood equations are derived first for exponential families when some parameters satisfy zero value constraints. From these equations explicit estimates are obtained, which are asymptotically efficient, and they are applied to covariance chains. Simulation results confirm the satisfactory behaviour of the explicit covariance chain estimates also in moderatesize samples.
Multiple testing and error control in Gaussian graphical model selection
 Statistical Science
"... Abstract. Graphical models provide a framework for exploration of multivariate dependence patterns. The connection between graph and statistical model is made by identifying the vertices of the graph with the observed variables and translating the pattern of edges in the graph into a pattern of cond ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Abstract. Graphical models provide a framework for exploration of multivariate dependence patterns. The connection between graph and statistical model is made by identifying the vertices of the graph with the observed variables and translating the pattern of edges in the graph into a pattern of conditional independences that is imposed on the variables ’ joint distribution. Focusing on Gaussian models, we review classical graphical models. For these models the defining conditional independences are equivalent to vanishing of certain (partial) correlation coefficients associated with individual edges that are absent from the graph. Hence, Gaussian graphical model selection can be performed by multiple testing of hypotheses about vanishing (partial) correlation coefficients. We show and exemplify how this approach allows one to perform model selection while controlling error rates for incorrect edge inclusion. Key words and phrases: Acyclic directed graph, Bayesian network, bidirected graph, chain graph, concentration graph, covariance graph, DAG, graphical model, multiple testing, undirected graph. 1.
Graphical methods for efficient likelihood inference in gaussian covariance models
 Journal of Machine Learning
, 2008
"... Abstract. In graphical modelling, a bidirected graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bidirected graph into a maximal ancestral graph that (i) represents the same independence structure as the origi ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Abstract. In graphical modelling, a bidirected graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bidirected graph into a maximal ancestral graph that (i) represents the same independence structure as the original bidirected graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bidirected edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts. 1.
Automating Path Analysis for Building Causal Models from Data
 Proc. 10th Intl. Conf. on Machine Learning
, 1993
"... Path analysis is a generalization of multiple linear regression that builds models with causal interpretations. It is an exploratory or discovery procedure for finding causal structure in correlational data. Recently, we have applied statistical methods such as path analysis to the problem of bui ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Path analysis is a generalization of multiple linear regression that builds models with causal interpretations. It is an exploratory or discovery procedure for finding causal structure in correlational data. Recently, we have applied statistical methods such as path analysis to the problem of building models of AI programs, which are generally complex and poorly understood.