Results 1  10
of
27
Full functional verification of linked data structures
 In ACM Conf. Programming Language Design and Implementation (PLDI
, 2008
"... We present the first verification of full functional correctness for a range of linked data structure implementations, including mutable lists, trees, graphs, and hash tables. Specifically, we present the use of the Jahob verification system to verify formal specifications, written in classical high ..."
Abstract

Cited by 79 (17 self)
 Add to MetaCart
We present the first verification of full functional correctness for a range of linked data structure implementations, including mutable lists, trees, graphs, and hash tables. Specifically, we present the use of the Jahob verification system to verify formal specifications, written in classical higherorder logic, that completely capture the desired behavior of the Java data structure implementations (with the exception of properties involving execution time and/or memory consumption). Given that the desired correctness properties include intractable constructs such as quantifiers, transitive closure, and lambda abstraction, it is a challenge to successfully prove the generated verification conditions. Our Jahob verification system uses integrated reasoning to split each verification condition into a conjunction of simpler subformulas, then apply a diverse collection of specialized decision procedures,
Complete Functional Synthesis
"... Synthesis of program fragments from specifications can make programs easier to write and easier to reason about. To integrate synthesis into programming languages, synthesis algorithms should behave in a predictable way—they should succeed for a welldefined class of specifications. They should also ..."
Abstract

Cited by 28 (12 self)
 Add to MetaCart
Synthesis of program fragments from specifications can make programs easier to write and easier to reason about. To integrate synthesis into programming languages, synthesis algorithms should behave in a predictable way—they should succeed for a welldefined class of specifications. They should also support unbounded data types such as numbers and data structures. We propose to generalize decision procedures into predictable and complete synthesis procedures. Such procedures are guaranteed to find code that satisfies the specification if such code exists. Moreover, we identify conditions under which synthesis will statically decide whether the solution is guaranteed to exist, and whether it is unique. We demonstrate our approach by starting from decision procedures for linear arithmetic and data structures and transforming them into synthesis procedures. We establish results on the size and the efficiency of the synthesized code. We show that such procedures are useful as a language extension with implicit value definitions, and we show how to extend a compiler to support such definitions. Our constructs provide the benefits of synthesis to programmers, without requiring them to learn new concepts or give up a deterministic execution model.
Decision procedures for algebraic data types with abstractions
 IN 37TH ACM SIGACTSIGPLAN SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES (POPL), 2010. DECISION PROCEDURES FOR ORDERED COLLECTIONS 15 SHE75. SAHARON SHELAH. THE MONADIC THEORY OF ORDER. THA ANNALS OF MATHEMATICS OF MATHEMATICS
, 2010
"... We describe a family of decision procedures that extend the decision procedure for quantifierfree constraints on recursive algebraic data types (term algebras) to support recursive abstraction functions. Our abstraction functions are catamorphisms (term algebra homomorphisms) mapping algebraic data ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
We describe a family of decision procedures that extend the decision procedure for quantifierfree constraints on recursive algebraic data types (term algebras) to support recursive abstraction functions. Our abstraction functions are catamorphisms (term algebra homomorphisms) mapping algebraic data type values into values in other decidable theories (e.g. sets, multisets, lists, integers, booleans). Each instance of our decision procedure family is sound; we identify a widely applicable manytoone condition on abstraction functions that implies the completeness. Complete instances of our decision procedure include the following correctness statements: 1) a functional data structure implementation satisfies a recursively specified invariant, 2) such data structure conforms to a contract given in terms of sets, multisets, lists, sizes, or heights, 3) a transformation of a formula (or lambda term) abstract syntax tree changes the set of free variables in the specified way.
An integrated proof language for imperative programs
 In PLDI’09
"... We present an integrated proof language for guiding the actions of multiple reasoning systems as they work together to prove complex correctness properties of imperative programs. The language operates in the context of a program verification system that uses multiple reasoning systems to discharge ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
We present an integrated proof language for guiding the actions of multiple reasoning systems as they work together to prove complex correctness properties of imperative programs. The language operates in the context of a program verification system that uses multiple reasoning systems to discharge generated proof obligations. It is designed to 1) enable developers to resolve key choice points in complex program correctness proofs, thereby enabling automated reasoning systems to successfully prove the desired correctness properties; 2) allow developers to identify key lemmas for the reasoning systems to prove, thereby guiding the reasoning systems to find an effective proof decomposition; 3) enable multiple reasoning systems to work together productively to prove a single correctness property by providing a mechanism that developers can use to divide the property into lemmas, each of which is suitable for
Decision Procedures for Multisets with Cardinality Constraints
"... Abstract. Applications in software verification and interactive theorem proving often involve reasoning about sets of objects. Cardinality constraints on such collections also arise in these applications. Multisets arise in these applications for analogous reasons as sets: abstracting the content of ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
Abstract. Applications in software verification and interactive theorem proving often involve reasoning about sets of objects. Cardinality constraints on such collections also arise in these applications. Multisets arise in these applications for analogous reasons as sets: abstracting the content of linked data structure with duplicate elements leads to multisets. Interactive theorem provers such as Isabelle specify theories of multisets and prove a number of theorems about them to enable their use in interactive verification. However, the decidability and complexity of constraints on multisets is much less understood than for constraints on sets. The first contribution of this paper is a polynomialspace algorithm for deciding expressive quantifierfree constraints on multisets with cardinality operators. Our decision procedure reduces in polynomial time constraints on multisets to constraints in an extension of quantifierfree Presburger arithmetic with certain “unbounded sum ” expressions. We prove bounds on solutions of resulting constraints and describe a polynomialspace decision procedure for these constraints. The second contribution of this paper is a proof that adding quantifiers to a constraint language containing subset and cardinality operators yields undecidable constraints. The result follows by reduction from Hilbert’s 10th problem. 1
On Combining Theories with Shared Set Operations
"... Abstract. We explore the problem of automated reasoning about the nondisjoint combination of theories that share set variables and operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Abstract. We explore the problem of automated reasoning about the nondisjoint combination of theories that share set variables and operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional operations to quantified formulas belonging to several expressive decidable logics. 1
On Linear Arithmetic with Stars
"... Abstract. We consider an extension of integer linear arithmetic with a star operator that takes closure under vector addition of the set of solutions of linear arithmetic subformula. We show that the satisfiability problem for this language is in NP (and therefore NPcomplete). Our proof uses a gene ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
Abstract. We consider an extension of integer linear arithmetic with a star operator that takes closure under vector addition of the set of solutions of linear arithmetic subformula. We show that the satisfiability problem for this language is in NP (and therefore NPcomplete). Our proof uses a generalization of a recent result on sparse solutions of integer linear programming problems. We present two consequences of our result. The first one is an optimal decision procedure for a logic of sets, multisets, and cardinalities that has applications in verification, interactive theorem proving, and description logics. The second is NPcompleteness of the reachability problem for a class of “homogeneous ” transition systems whose transitions are defined using integer linear arithmetic formulas. 1
Runtime Checking for Program Verification
"... Abstract. The process of verifying that a program conforms to its specification is often hampered by errors in both the program and the specification. A runtime checker that can evaluate formal specifications can be useful for quickly identifying such errors. This paper describes our preliminary exp ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Abstract. The process of verifying that a program conforms to its specification is often hampered by errors in both the program and the specification. A runtime checker that can evaluate formal specifications can be useful for quickly identifying such errors. This paper describes our preliminary experience with incorporating runtime checking into the Jahob verification system and discusses some lessons we learned in this process. One of the challenges in building a runtime checker for a program verification system is that the language of invariants and assertions is designed for simplicity of semantics and tractability of proofs, and not for runtime checking. Some of the more challenging constructs include existential and universal quantification, set comprehension, specification variables, and formulas that refer to past program states. In this paper, we describe how we handle these constructs in our runtime checker, and describe directions for future work. 1
A Local Reasoning for Global Invariants, Part I: Region Logic
"... Shared mutable objects pose grave challenges in reasoning, especially for information hiding and modularity. This paper presents a novel technique for reasoning about erroravoiding partial correctness of programs featuring shared mutable objects, and investigates the technique by formalizing a logi ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Shared mutable objects pose grave challenges in reasoning, especially for information hiding and modularity. This paper presents a novel technique for reasoning about erroravoiding partial correctness of programs featuring shared mutable objects, and investigates the technique by formalizing a logic. Using a first order assertion language, the logic provides heaplocal reasoning about mutation and separation, via ghost fields and variables of type ‘region ’ (finite sets of object references). A new form of frame condition specifies write, read, and allocation effects using region expressions; this supports a frame rule that allows a command to read state on which the framed predicate depends. Soundness is proved using a standard program semantics. The logic facilitates heaplocal reasoning about object invariants, as shown here by examples. Part II of the paper extends the logic with second order framing which formalizes the hiding of data invariants.
Collections, Cardinalities, and Relations
"... Abstract. Logics that involve collections (sets, multisets), and cardinality constraints are useful for reasoning about unbounded data structures and concurrent processes. To make such logics more useful in verification this paper extends them with the ability to compute direct and inverse relation ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Abstract. Logics that involve collections (sets, multisets), and cardinality constraints are useful for reasoning about unbounded data structures and concurrent processes. To make such logics more useful in verification this paper extends them with the ability to compute direct and inverse relation and function images. We establish decidability and complexity bounds for the extended logics. 1