Results 1 
4 of
4
A mechanically verified, sound and complete theorem prover for first order logic
 In Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, volume 3603 of Lecture Notes in Computer Science
, 2005
"... Abstract. We present a system of first order logic, together with soundness and completeness proofs wrt. standard first order semantics. Proofs are mechanised in Isabelle/HOL. Our definitions are computable, allowing us to derive an algorithm to test for first order validity. This algorithm may be e ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Abstract. We present a system of first order logic, together with soundness and completeness proofs wrt. standard first order semantics. Proofs are mechanised in Isabelle/HOL. Our definitions are computable, allowing us to derive an algorithm to test for first order validity. This algorithm may be executed in Isabelle/HOL using the rewrite engine. Alternatively the algorithm has been ported to OCaML. 1
Decidability Extracted: Synthesizing ``CorrectbyConstruction'' Decision Procedures from Constructive Proofs
, 1998
"... The topic of this thesis is the extraction of efficient and readable programs from formal constructive proofs of decidability. The proof methods employed to generate the efficient code are new and result in clean and readable Nuprl extracts for two nontrivial programs. They are based on the use of ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The topic of this thesis is the extraction of efficient and readable programs from formal constructive proofs of decidability. The proof methods employed to generate the efficient code are new and result in clean and readable Nuprl extracts for two nontrivial programs. They are based on the use of Nuprl's set type and techniques for extracting efficient programs from induction principles. The constructive formal theories required to express the decidability theorems are of independent interest. They formally circumscribe the mathematical knowledge needed to understand the derived algorithms. The formal theories express concepts that are taught at the senior college level. The decidability proofs themselves, depending on this material, are of interest and are presented in some detail. The proof of decidability of classical propositional logic is relative to a semantics based on Kleene's strong threevalued logic. The constructive proof of intuitionistic decidability presented here is the first machine formalization of this proof. The exposition reveals aspects of the Nuprl tactic collection relevant to the creation of readable proofs; clear extracts and efficient code are illustrated in the discussion of the proofs.
Extracting Propositional Decidability: A proof of propositional decidability in constructive type theory and its extracted program.
, 1997
"... This paper describes a formal constructive proof of the decidability of a sequent calculus presentation of classical propositional logic. The Nuprl theories and proofs reported on here are part of a larger program to safely incorporate formally justified decision procedures into theorem provers. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This paper describes a formal constructive proof of the decidability of a sequent calculus presentation of classical propositional logic. The Nuprl theories and proofs reported on here are part of a larger program to safely incorporate formally justified decision procedures into theorem provers. The proof is implemented in the Nuprl system and the resulting proof object yields a "correctbyconstruction" program for deciding propositional sequents. In the case the sequent is valid, the program reports that fact; in the case the sequent is falsifiable, the program returns a falsifying assignment. Also, the semantics of the propositional sequents is formulated here in Kleene's strong threevalued logic which both: agrees with the standard two valued semantics; and gives finer information in case the proposition is falsifiable. Contents 1 Introduction 2 1.1 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.2 Overview of the Approach : : : : : : : : : : : :...
Algebraic System Specification and Development: Survey and Annotated Bibliography  Second Edition 
, 1997
"... Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . ..."
Abstract
 Add to MetaCart
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.2 Action Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.7 Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.1 Early Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.2 Recent Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . 55 4.7.3 The Common Framework Initiative. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Methodology 57 5.1 Development Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Applica...