Results 1  10
of
13
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 215 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
ECC, an Extended Calculus of Constructions
, 1989
"... We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics ..."
Abstract

Cited by 85 (4 self)
 Add to MetaCart
We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics may be adequately formalized. It is shown that ECC is strongly normalizing and has other nice prooftheoretic properties. An !\GammaSet (realizability) model is described to show how the essential properties of the calculus can be captured settheoretically.
Implementing a Model Checker for LEGO
 Proc. of the 4th Inter Symp. of Formal Methods Europe, FME'97: Industrial Applications and Strengthened Foundations of Formal Methods
, 1997
"... . Interactive theorem proving gives a general approach for modelling and verification of both hardware and software systems but requires significant human efforts to deal with many tedious proofs. To be used in practical, we need some automatic tools such as model checkers to deal with those tedious ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
. Interactive theorem proving gives a general approach for modelling and verification of both hardware and software systems but requires significant human efforts to deal with many tedious proofs. To be used in practical, we need some automatic tools such as model checkers to deal with those tedious proofs. In this paper, we formalise a verification system of both CCS and an imperative language in LEGO which can be used to verify both finite and infinite problems. Then a model checker, LegoMC, is implemented to generate the LEGO proof terms of finite models automatically. Therefore people can use LEGO to verify a general problem and throw some finite subproblems to be verified by LegoMC. On the other hand, this integration extends the power of model checking to verify more complicated and infinite models as well. 1 Introduction Interactive theorem proving gives a general approach for modelling and verification of both hardware and software systems but requires significant human effor...
A mechanically verified, sound and complete theorem prover for first order logic
 In Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, volume 3603 of Lecture Notes in Computer Science
, 2005
"... Abstract. We present a system of first order logic, together with soundness and completeness proofs wrt. standard first order semantics. Proofs are mechanised in Isabelle/HOL. Our definitions are computable, allowing us to derive an algorithm to test for first order validity. This algorithm may be e ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Abstract. We present a system of first order logic, together with soundness and completeness proofs wrt. standard first order semantics. Proofs are mechanised in Isabelle/HOL. Our definitions are computable, allowing us to derive an algorithm to test for first order validity. This algorithm may be executed in Isabelle/HOL using the rewrite engine. Alternatively the algorithm has been ported to OCaML. 1
Pure type systems in rewriting logic
 In Collection to the honor of O.J. Dahl, volume 2635 of LNCS
, 2003
"... ..."
Mechanizing the Metatheory of LF
, 2008
"... LF is a dependent type theory in which many other formal systems can be conveniently embedded. However, correct use of LF relies on nontrivial metatheoretic developments such as proofs of correctness of decision procedures for LF’s judgments. Although detailed informal proofs of these properties hav ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
LF is a dependent type theory in which many other formal systems can be conveniently embedded. However, correct use of LF relies on nontrivial metatheoretic developments such as proofs of correctness of decision procedures for LF’s judgments. Although detailed informal proofs of these properties have been published, they have not been formally verified in a theorem prover. We have formalized these properties within Isabelle/HOL using the Nominal Datatype Package, closely following a recent article by Harper and Pfenning. In the process, we identified and resolved a gap in one of the proofs and a small number of minor lacunae in others. Besides its intrinsic interest, our formalization provides a foundation for studying the adequacy of LF encodings, the correctness of Twelfstyle metatheoretic reasoning, and the metatheory of extensions to LF.
On Extensibility of Proof Checkers
 in Dybjer, Nordstrom and Smith (eds), Types for Proofs and Programs: International Workshop TYPES'94, Bastad
, 1995
"... This paper is about mechanical checking of formal mathematics. Given some formal system, we want to construct derivations in that system, or check the correctness of putative derivations; our job is not to ascertain truth (that is the job of the designer of our formal system), but only proof. Howeve ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
This paper is about mechanical checking of formal mathematics. Given some formal system, we want to construct derivations in that system, or check the correctness of putative derivations; our job is not to ascertain truth (that is the job of the designer of our formal system), but only proof. However, we are quite rigid about this: only a derivation in our given formal system will do; nothing else counts as evidence! Thus it is not a collection of judgements (provability), or a consequence relation [Avr91] (derivability) we are interested in, but the derivations themselves; the formal system used to present a logic is important. This viewpoint seems forced on us by our intention to actually do formal mathematics. There is still a question, however, revolving around whether we insist on objects that are immediately recognisable as proofs (direct proofs), or will accept some metanotations that only compute to proofs (indirect proofs). For example, we informally refer to previously proved results, lemmas and theorems, without actually inserting the texts of their proofs in our argument. Such an argument could be made into a direct proof by replacing all references to previous results by their direct proofs, so it might be accepted as a kind of indirect proof. In fact, even for very simple formal systems, such an indirect proof may compute to a very much bigger direct proof, and if we will only accept a fully expanded direct proof (in a mechanical proof checker for example), we will not be able to do much mathematics. It is well known that this notion of referring to previous results can be internalized in a logic as a cut rule, or Modus Ponens. In a logic containing a cut rule, proofs containing cuts are considered direct proofs, and can be directly accepted by a proof ch...
Pure type systems in rewriting logic: Specifying typed higherorder languages in a firstorder logical framework
 In Essays in Memory of OleJohan Dahl, volume 2635 of LNCS
, 2004
"... ..."
Proof Representations in Theorem Provers
, 1998
"... This is a survey of some of the proof representations used by current theorem provers. The aim of the survey is to ascertain the range of mechanisms used to represent proofs and the purposes to which these representations are put. This is done within a simple framework. It examines both internal an ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
This is a survey of some of the proof representations used by current theorem provers. The aim of the survey is to ascertain the range of mechanisms used to represent proofs and the purposes to which these representations are put. This is done within a simple framework. It examines both internal and external representations, although the focus is on representations that could be exported to an external proof checker. A number of examples from various provers are given in a series of appendices.
Formal Verification of Concurrent Programs Based on Type Theory
, 1998
"... Interactive theorem proving provides a general approach to modeling and verification of both finitestate and infinitestate systems but requires significant human efforts to deal with many tedious proofs. On the other hand, modelchecking is limited to some application domain with small finitestate ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Interactive theorem proving provides a general approach to modeling and verification of both finitestate and infinitestate systems but requires significant human efforts to deal with many tedious proofs. On the other hand, modelchecking is limited to some application domain with small finitestate space. A natural thought for this problem is to integrate these two approaches. To keep the consistency of the integration and ensure the correctness of verification, we suggest to use type theory based theorem provers (e.g. Lego) as the platform for the integration and build a modelchecker to do parts of the verification automatically. We formalise a verification system of both CCS and an imperative language in the proof development system Lego which can be used to verify both finitestate and infinitestate problems. Then a modelchecker, LegoMC, is implemented to generate Lego proof terms for finitestate problems automatically. Therefore people can use Lego to verify a general problem ...