Results 1 
4 of
4
Physical Hypercomputation and the Church–Turing Thesis
, 2003
"... We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy’s thesis.
Quantum SpeedUp of Computations
 Philosophy of Science
, 2002
"... ChurchTuring Thesis as saying something about the scope and limitations of physical computing machines. Although this was not the intention of Church or Turing, the Physical Church Turing thesis is interesting in its own right. Consider, for example, Wolfram’s formulation: One can expect in fact th ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
ChurchTuring Thesis as saying something about the scope and limitations of physical computing machines. Although this was not the intention of Church or Turing, the Physical Church Turing thesis is interesting in its own right. Consider, for example, Wolfram’s formulation: One can expect in fact that universal computers are as powerful in their computational capabilities as any physically realizable system can be, that they can simulate any physical system...Nophysically implementable procedure could then shortcut a computationally irreducible process. (Wolfram 1985) Wolfram’s thesis consists of two parts: (a) Any physical system can be simulated (to any degree of approximation) by a universal Turing machine (b) Complexity bounds on Turing machine simulations have physical significance. For example, suppose that the computation of the minimum energy of some system of n particles takes at least exponentially (in n) many steps. Then the relaxation time of the actual physical system to its minimum energy state will also take exponential time. An even more extreme formulation of (more or less) the same thesis is due to Aharonov (1998): A probabilistic Turing machine can simulate any reasonable physical device in polynomial cost. She calls this The Modern Church Thesis. Aharonov refers here to probabilistic Turing machines that use random numbers in addition to the usual deterministic table of steps. It seems that such machines are capable to perform certain tasks faster than fully deterministic machines. The most famous randomized algorithm of that kind concerns the decision whether a given natural number is prime. A probabilistic algorithm that decides primality in a number of
Contents
, 2008
"... Different types of physical unknowables are discussed. Provable unknowables are derived from reduction to problems which are known to be recursively unsolvable. Recent series solutions to the nbody problem and related to it, chaotic systems, may have no computable radius of convergence. Quantum unk ..."
Abstract
 Add to MetaCart
Different types of physical unknowables are discussed. Provable unknowables are derived from reduction to problems which are known to be recursively unsolvable. Recent series solutions to the nbody problem and related to it, chaotic systems, may have no computable radius of convergence. Quantum unknowables include the random occurrence of single events, complementarity and value indefiniteness.