Results 1 
5 of
5
Mathematics by Experiment: Plausible Reasoning in the 21st Century, extended second edition, A K
 2008. EXPERIMENTATION AND COMPUTATION 19
, 2008
"... If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. (Kurt Gödel, 1951) Paper Revised 09–09–04 This paper is an extended version of a presentation made at ICME10, related work is elab ..."
Abstract

Cited by 39 (15 self)
 Add to MetaCart
If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. (Kurt Gödel, 1951) Paper Revised 09–09–04 This paper is an extended version of a presentation made at ICME10, related work is elaborated in references [1–7]. 1 I shall generally explore experimental and heuristic mathematics and give (mostly) accessible, primarily visual and symbolic, examples. The emergence of powerful mathematical computing environments like Maple and Matlab, the growing
Implications of Experimental Mathematics for the Philosophy of Mathematics,” chapter to appear
 Current Issues in the Philosophy of Mathematics From the Viewpoint of Mathematicians and Teachers of Mathematics, 2006. [Ddrive Preprint 280
"... Christopher Koch [34] accurately captures a great scientific distaste for philosophizing: “Whether we scientists are inspired, bored, or infuriated by philosophy, all our theorizing and experimentation depends on particular philosophical background assumptions. This hidden influence is an acute emba ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Christopher Koch [34] accurately captures a great scientific distaste for philosophizing: “Whether we scientists are inspired, bored, or infuriated by philosophy, all our theorizing and experimentation depends on particular philosophical background assumptions. This hidden influence is an acute embarrassment to many researchers, and it is therefore not often acknowledged. ” (Christopher Koch, 2004) That acknowledged, I am of the opinion that mathematical philosophy matters more now than it has in nearly a century. The power of modern computers matched with that of modern mathematical software and the sophistication of current mathematics is changing the way we do mathematics. In my view it is now both necessary and possible to admit quasiempirical inductive methods fully into mathematical argument. In doing so carefully we will enrich mathematics and yet preserve the mathematical literature’s deserved reputation for reliability—even as the methods and criteria change. What do I mean by reliability? Well, research mathematicians still consult Euler or Riemann to be informed, anatomists only consult Harvey 3 for historical reasons. Mathematicians happily quote old papers as core steps of arguments, physical scientists expect to have to confirm results with another experiment. 1 Mathematical Knowledge as I View It Somewhat unusually, I can exactly place the day at registration that I became a mathematician and I recall the reason why. I was about to deposit my punch cards in the ‘honours history bin’. I remember thinking “If I do study history, in ten years I shall have forgotten how to use the calculus properly. If I take mathematics, I shall still be able to read competently about the War of 1812 or the Papal schism. ” (Jonathan Borwein, 1968) The inescapable reality of objective mathematical knowledge is still with me. Nonetheless, my view then of the edifice I was entering is not that close to my view of the one I inhabit forty years later. 1 The companion web site is at www.experimentalmath.info
OUTLINE of PRESENTATION
, 2004
"... If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. (Kurt ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. (Kurt
MY INTENTIONS IN THIS TALK • to discuss Experimental Mathodology ∗
, 2004
"... If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics. ..."
Abstract
 Add to MetaCart
If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics.
Prepared for the International Journal of Computers for Mathematical Learning.
, 2004
"... ‘... where almost one quarter hour was spent, each beholding the other with admiration before one word was spoken: at last Mr. Briggs began ”My Lord, I have undertaken this long journey purposely to see your person, and to know by what wit or ingenuity you first came to think of this most excellent ..."
Abstract
 Add to MetaCart
‘... where almost one quarter hour was spent, each beholding the other with admiration before one word was spoken: at last Mr. Briggs began ”My Lord, I have undertaken this long journey purposely to see your person, and to know by what wit or ingenuity you first came to think of this most excellent help unto Astronomy, viz. the Logarithms: but my Lord, being by you found out, I wonder nobody else found it out before, when now being known it appears so easy.” ’ 1 The emergence of powerful mathematical computing environments, the growing availability of correspondingly powerful (multiprocessor) computers and the pervasive presence of the internet allow for mathematicians, students and teachers, to proceed heuristically and ‘quasiinductively’. We may increasingly use symbolic and numeric computation, visualization tools, simulation and data mining. The unique features of our discipline make this both more problematic and more challenging. For example, there is still no truly satisfactory way of displaying mathematical notation on the web; and we care more about the reliability of our literature than does any other science. The traditional role of proof in mathematics is arguably under siege—for reasons both good and bad. 1 Henry Briggs is describing his first meeting in 1617 with Napier whom he had travelled