Results 1  10
of
185
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 548 (25 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
Learning the discriminative powerinvariance tradeoff
 In ICCV
, 2007
"... We investigate the problem of learning optimal descriptors for a given classification task. Many handcrafted descriptors have been proposed in the literature for measuring visual similarity. Looking past initial differences, what really distinguishes one descriptor from another is the tradeoff that ..."
Abstract

Cited by 149 (4 self)
 Add to MetaCart
We investigate the problem of learning optimal descriptors for a given classification task. Many handcrafted descriptors have been proposed in the literature for measuring visual similarity. Looking past initial differences, what really distinguishes one descriptor from another is the tradeoff that it achieves between discriminative power and invariance. Since this tradeoff must vary from task to task, no single descriptor can be optimal in all situations. Our focus, in this paper, is on learning the optimal tradeoff for classification given a particular training set and prior constraints. The problem is posed in the kernel learning framework. We learn the optimal, domainspecific kernel as a combination of base kernels corresponding to base features which achieve different levels of tradeoff (such as no invariance, rotation invariance, scale invariance, affine invariance, etc.) This leads to a convex optimisation problem with a unique global optimum which can be solved for efficiently. The method is shown to achieve stateoftheart performance on the UIUC textures, Oxford flowers and Caltech 101 datasets. 1.
A Survey of Kernels for Structured Data
"... Kernel methods in general and support vector machines in particular have been successful in various learning tasks on data represented in a single table. Much 'realworld ' data, however, is structured it has no natural representation in a single table. Usually, to apply kernel methods to 'realworl ..."
Abstract

Cited by 113 (3 self)
 Add to MetaCart
Kernel methods in general and support vector machines in particular have been successful in various learning tasks on data represented in a single table. Much 'realworld ' data, however, is structured it has no natural representation in a single table. Usually, to apply kernel methods to 'realworld' data, extensive preprocessing is performed toembed the data into areal vector space and thus in a single table. This survey describes several approaches ofdefining positive definite kernels on structured instances directly.
Learning the kernel function via regularization
 Journal of Machine Learning Research
, 2005
"... We study the problem of finding an optimal kernel from a prescribed convex set of kernels K for learning a realvalued function by regularization. We establish for a wide variety of regularization functionals that this leads to a convex optimization problem and, for square loss regularization, we ch ..."
Abstract

Cited by 96 (7 self)
 Add to MetaCart
We study the problem of finding an optimal kernel from a prescribed convex set of kernels K for learning a realvalued function by regularization. We establish for a wide variety of regularization functionals that this leads to a convex optimization problem and, for square loss regularization, we characterize the solution of this problem. We show that, although K may be an uncountable set, the optimal kernel is always obtained as a convex combination of at most m+2 basic kernels, where m is the number of data examples. In particular, our results apply to learning the optimal radial kernel or the optimal dot product kernel. 1.
Applying support vector machines to imbalanced datasets
 In Proceedings of the 15th European Conference on Machine Learning (ECML
, 2004
"... Abstract. Support Vector Machines (SVM) have been extensively studied and have shown remarkable success in many applications. However the success of SVM is very limited when it is applied to the problem of learning from imbalanced datasets in which negative instances heavily outnumber the positive i ..."
Abstract

Cited by 87 (2 self)
 Add to MetaCart
Abstract. Support Vector Machines (SVM) have been extensively studied and have shown remarkable success in many applications. However the success of SVM is very limited when it is applied to the problem of learning from imbalanced datasets in which negative instances heavily outnumber the positive instances (e.g. in gene profiling and detecting credit card fraud). This paper discusses the factors behind this failure and explains why the common strategy of undersampling the training data may not be the best choice for SVM. We then propose an algorithm for overcoming these problems which is based on a variant of the SMOTE algorithm by Chawla et al, combined with Veropoulos et al’s different error costs algorithm. We compare the performance of our algorithm against these two algorithms, along with undersampling and regular SVM and show that our algorithm outperforms all of them. 1
Learning the Kernel with Hyperkernels
, 2003
"... This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical es ..."
Abstract

Cited by 79 (2 self)
 Add to MetaCart
This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical estimation problem very much akin to the problem of minimizing a regularized risk functional.
More Generality in Efficient Multiple Kernel Learning
"... Recent advances in Multiple Kernel Learning (MKL) have positioned it as an attractive tool for tackling many supervised learning tasks. The development of efficient gradient descent based optimization schemes has made it possible to tackle large scale problems. Simultaneously, MKL based algorithms h ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
Recent advances in Multiple Kernel Learning (MKL) have positioned it as an attractive tool for tackling many supervised learning tasks. The development of efficient gradient descent based optimization schemes has made it possible to tackle large scale problems. Simultaneously, MKL based algorithms have achieved very good results on challenging real world applications. Yet, despite their successes, MKL approaches are limited in that they focus on learning a linear combination of given base kernels. In this paper, we observe that existing MKL formulations can be extended to learn general kernel combinations subject to general regularization. This can be achieved while retaining all the efficiency of existing large scale optimization algorithms. To highlight the advantages of generalized kernel learning, we tackle feature selection problems on benchmark vision and UCI databases. It is demonstrated that the proposed formulation can lead to better results not only as compared to traditional MKL but also as compared to stateoftheart wrapper and filter methods for feature selection. 1.
A survey of kernel and spectral methods for clustering
, 2008
"... Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., Kmeans, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel Kmeans clustering algorithm.
Learning Semantic Similarity
 In NIPS
, 2003
"... The standard representation of text documents as bags of words suffers from well known limitations, mostly due to its inability to exploit semantic similarity between terms. Attempts to incorporate some notion of term similarity include latent semantic indexing [8], the use of semantic networks [9], ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
The standard representation of text documents as bags of words suffers from well known limitations, mostly due to its inability to exploit semantic similarity between terms. Attempts to incorporate some notion of term similarity include latent semantic indexing [8], the use of semantic networks [9], and probabilistic methods [5]. In this paper we propose two methods for inferring such similarity from a corpus. The first one defines wordsimilarity based on documentsimilarity and viceversa, giving rise to a system of equations whose equilibrium point we use to obtain a semantic similarity measure. The second method models semantic relations by means of a diffusion process on a graph defined by lexicon and cooccurrence information. Both approaches produce valid kernel functions parametrised by a real number. The paper shows how the alignment measure can be used to successfully perform model selection over this parameter. Combined with the use of support vector machines we obtain positive results.