Results 1  10
of
54
Lowness Properties and Randomness
 ADVANCES IN MATHEMATICS
"... The set A is low for MartinLof random if each random set is already random relative to A. A is Ktrivial if the prefix complexity K of each initial segment of A is minimal, namely K(n)+O(1). We show that these classes coincide. This implies answers to questions of AmbosSpies and Kucera [2 ..."
Abstract

Cited by 78 (21 self)
 Add to MetaCart
The set A is low for MartinLof random if each random set is already random relative to A. A is Ktrivial if the prefix complexity K of each initial segment of A is minimal, namely K(n)+O(1). We show that these classes coincide. This implies answers to questions of AmbosSpies and Kucera [2], showing that each low for MartinLof random set is # 2 . Our class induces a natural intermediate # 3 ideal in the r.e. Turing degrees (which generates the whole class under downward closure). Answering
Trivial Reals
"... Solovay showed that there are noncomputable reals ff such that H(ff _ n) 6 H(1n) + O(1), where H is prefixfree Kolmogorov complexity. Such Htrivial reals are interesting due to the connection between algorithmic complexity and effective randomness. We give a new, easier construction of an Htrivi ..."
Abstract

Cited by 56 (31 self)
 Add to MetaCart
Solovay showed that there are noncomputable reals ff such that H(ff _ n) 6 H(1n) + O(1), where H is prefixfree Kolmogorov complexity. Such Htrivial reals are interesting due to the connection between algorithmic complexity and effective randomness. We give a new, easier construction of an Htrivial real. We also analyze various computabilitytheoretic properties of the Htrivial reals, showing for example that no Htrivial real can compute the halting problem. Therefore, our construction of an Htrivial computably enumerable set is an easy, injuryfree construction of an incomplete computably enumerable set. Finally, we relate the Htrivials to other classes of &quot;highly nonrandom &quot; reals that have been previously studied.
Randomness, relativization, and Turing degrees
 J. Symbolic Logic
, 2005
"... We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is nrandom if it is MartinLof random relative to . We show that a set is 2random if and only if there is a constant c such that infinitely many initial segments x of the set are cincompre ..."
Abstract

Cited by 40 (18 self)
 Add to MetaCart
We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is nrandom if it is MartinLof random relative to . We show that a set is 2random if and only if there is a constant c such that infinitely many initial segments x of the set are cincompressible: C(x) c. The `only if' direction was obtained independently by Joseph Miller. This characterization can be extended to the case of timebounded Ccomplexity.
Using random sets as oracles
"... Let R be a notion of algorithmic randomness for individual subsets of N. We say B is a base for R randomness if there is a Z �T B such that Z is R random relative to B. We show that the bases for 1randomness are exactly the Ktrivial sets and discuss several consequences of this result. We also sho ..."
Abstract

Cited by 34 (15 self)
 Add to MetaCart
Let R be a notion of algorithmic randomness for individual subsets of N. We say B is a base for R randomness if there is a Z �T B such that Z is R random relative to B. We show that the bases for 1randomness are exactly the Ktrivial sets and discuss several consequences of this result. We also show that the bases for computable randomness include every ∆ 0 2 set that is not diagonally noncomputable, but no set of PAdegree. As a consequence, we conclude that an nc.e. set is a base for computable randomness iff it is Turing incomplete. 1
Recursively Enumerable Reals and Chaitin Ω Numbers
"... A real is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay [23] and Chaitin [10] we say that an r.e. real dominates an r.e. real if from a good approximation of from below one can compute a good approximation of from b ..."
Abstract

Cited by 34 (3 self)
 Add to MetaCart
A real is called recursively enumerable if it is the limit of a recursive, increasing, converging sequence of rationals. Following Solovay [23] and Chaitin [10] we say that an r.e. real dominates an r.e. real if from a good approximation of from below one can compute a good approximation of from below. We shall study this relation and characterize it in terms of relations between r.e. sets. Solovay's [23]like numbers are the maximal r.e. real numbers with respect to this order. They are random r.e. real numbers. The halting probability ofa universal selfdelimiting Turing machine (Chaitin's Ω number, [9]) is also a random r.e. real. Solovay showed that any Chaitin Ω number islike. In this paper we show that the converse implication is true as well: any Ωlike real in the unit interval is the halting probability of a universal selfdelimiting Turing machine.
On initial segment complexity and degrees of randomness
 Trans. Amer. Math. Soc
"... Abstract. One approach to understanding the fine structure of initial segment complexity was introduced by Downey, Hirschfeldt and LaForte. They define X ≤K Y to mean that (∀n) K(X ↾ n) ≤ K(Y ↾ n) +O(1). The equivalence classes under this relation are the Kdegrees. We prove that if X ⊕ Y is 1rand ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
Abstract. One approach to understanding the fine structure of initial segment complexity was introduced by Downey, Hirschfeldt and LaForte. They define X ≤K Y to mean that (∀n) K(X ↾ n) ≤ K(Y ↾ n) +O(1). The equivalence classes under this relation are the Kdegrees. We prove that if X ⊕ Y is 1random, then X and Y have no upper bound in the Kdegrees (hence, no join). We also prove that nrandomness is closed upward in the Kdegrees. Our main tool is another structure intended to measure the degree of randomness of real numbers: the vLdegrees. Unlike the Kdegrees, many basic properties of the vLdegrees are easy to prove. We show that X ≤K Y implies X ≤vL Y, so some results can be transferred. The reverse implication is proved to fail. The same analysis is also done for ≤C, the analogue of ≤K for plain Kolmogorov complexity. Two other interesting results are included. First, we prove that for any Z ∈ 2ω, a 1random real computable from a 1Zrandom real is automatically 1Zrandom. Second, we give a plain Kolmogorov complexity characterization of 1randomness. This characterization is related to our proof that X ≤C Y implies X ≤vL Y. 1.
Some ComputabilityTheoretical Aspects of Reals and Randomness
 the Lect. Notes Log. 18, Assoc. for Symbol. Logic
, 2001
"... We study computably enumerable reals (i.e. their left cut is computably enumerable) in terms of their spectra of representations and presentations. ..."
Abstract

Cited by 24 (7 self)
 Add to MetaCart
We study computably enumerable reals (i.e. their left cut is computably enumerable) in terms of their spectra of representations and presentations.
Relativizing Chaitin’s halting probability
 J. Math. Log
"... Abstract. As a natural example of a 1random real, Chaitin proposed the halting probability Ω of a universal prefixfree machine. We can relativize this example by considering a universal prefixfree oracle machine U. Let Ω A U be the halting probability of U A; this gives a natural uniform way of p ..."
Abstract

Cited by 22 (7 self)
 Add to MetaCart
Abstract. As a natural example of a 1random real, Chaitin proposed the halting probability Ω of a universal prefixfree machine. We can relativize this example by considering a universal prefixfree oracle machine U. Let Ω A U be the halting probability of U A; this gives a natural uniform way of producing an Arandom real for every A ∈ 2 ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory and this Omega operator. But unlike the jump, which is invariant (up to computable permutation) under the choice of an effective enumeration of the partial computable functions, Ω A U can be vastly different for different choices of U. Even for a fixed U, there are oracles A = ∗ B such that Ω A U and Ω B U are 1random relative to each other. We prove this and many other interesting properties of Omega operators. We investigate these operators from the perspective of analysis, computability theory, and of course, algorithmic randomness. 1.
Lowness properties and approximations of the jump
 Proceedings of the Twelfth Workshop of Logic, Language, Information and Computation (WoLLIC 2005). Electronic Lecture Notes in Theoretical Computer Science 143
, 2006
"... ..."
Every 2random real is Kolmogorov random
 J. Symbolic Logic
, 2004
"... Abstract. We study reals with infinitely many incompressible prefixes. Call A ∈ 2 ω Kolmogorov random if ( ∃ ∞ n) C(A ↾ n)> n − O(1), where C denotes plain Kolmogorov complexity. This property was suggested by Loveland and studied by MartinLöf, Schnorr and Solovay. We prove that 2random reals ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Abstract. We study reals with infinitely many incompressible prefixes. Call A ∈ 2 ω Kolmogorov random if ( ∃ ∞ n) C(A ↾ n)> n − O(1), where C denotes plain Kolmogorov complexity. This property was suggested by Loveland and studied by MartinLöf, Schnorr and Solovay. We prove that 2random reals are Kolmogorov random. 1 Together with the converse—proved by Nies, Stephan and Terwijn [11]—this provides a natural characterization of 2randomness in terms of plain complexity. We finish with a related characterization of 2randomness. §1. Introduction. This paper is part of an ongoing program to understand randomness for real numbers, which we take to be elements of 2 ω, by investigating the complexity of their initial segments. Solomonoff [13] and Kolmogorov [4] independently defined a measure of the information content of finite strings. Intuitively, a complex string should be difficult to compress. The Kolmogorov