Results 1  10
of
45
Finding shortest nonseparating and noncontractible cycles for topologically embedded graphs
 Discrete Comput. Geom
, 2005
"... We present an algorithm for finding shortest surface nonseparating cycles in graphs embedded on surfaces in O(g 3/2 V 3/2 log V + g 5/2 V 1/2) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents a considerable improvement over p ..."
Abstract

Cited by 43 (12 self)
 Add to MetaCart
We present an algorithm for finding shortest surface nonseparating cycles in graphs embedded on surfaces in O(g 3/2 V 3/2 log V + g 5/2 V 1/2) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents a considerable improvement over previous results by Thomassen, and Erickson and HarPeled. We also give algorithms to find a shortest noncontractible cycle in O(g O(g) V 3/2) time, which improves previous results for fixed genus. This result can be applied for computing the (nonseparating) facewidth of embedded graphs. Using similar ideas we provide the first nearlinear running time algorithm for computing the facewidth of a graph embedded on the projective plane, and an algorithm to find the facewidth of embedded toroidal graphs in O(V 5/4 log V) time. 1
A New Approach to AllPairs Shortest Paths on RealWeighted Graphs
 Theoretical Computer Science
, 2003
"... We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps. Her ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps. Here m and n are the number of edges and vertices, respectively.
Efficient algorithms for constructing (1 + ɛ, β)spanners in the distributed and streaming models
 Distributed Computing
, 2004
"... For an unweighted undirected graph G = (V, E), and a pair of positive integers α ≥ 1, β ≥ 0, a subgraph G ′ = (V, H), H ⊆ E, is called an (α, β)spanner of G if for every pair of vertices u, v ∈ V, distG ′(u, v) ≤ α · distG(u, v) + β. It was shown in [20] that for any ɛ> 0, κ = 1, 2,..., there exi ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
For an unweighted undirected graph G = (V, E), and a pair of positive integers α ≥ 1, β ≥ 0, a subgraph G ′ = (V, H), H ⊆ E, is called an (α, β)spanner of G if for every pair of vertices u, v ∈ V, distG ′(u, v) ≤ α · distG(u, v) + β. It was shown in [20] that for any ɛ> 0, κ = 1, 2,..., there exists an integer β = β(ɛ, κ) such that for every nvertex graph G there exists a (1 + ɛ, β)spanner G ′ with O(n 1+1/κ) edges. An efficient distributed protocol for constructing (1+ ɛ, β)spanners was devised in [18]. The running time and the communication complexity of that protocol are O(n 1+ρ) and O(En ρ), respectively, where ρ is an additional control parameter of the protocol that affects only the additive term β. In this paper we devise a protocol with a drastically improved running time (O(n ρ) as opposed to O(n 1+ρ)) for constructing (1 + ɛ, β)spanners. Our protocol has the same communication complexity as the protocol of [18], and it constructs spanners with essentially the same properties as the spanners that are constructed by the protocol of [18]. We also show that our protocol for constructing (1+ɛ, β)spanners can be adapted to the streaming model, and devise a streaming algorithm that uses a constant number of passes and O(n 1+1/κ · log n) bits of space for computing allpairsalmostshortestpaths of length at most by a multiplicative factor (1 + ɛ) and an additive term of β greater than the shortest paths. Our algorithm processes each edge in time O(n ρ), for an arbitrarily small ρ> 0. The only
Combining SpeedUp Techniques for ShortestPath Computations
 In Proc. 3rd Workshop on Experimental and Efficient Algorithms. LNCS
, 2004
"... Computing a shortest path from one node to another in a directed graph is a very common task in practice. This problem is classically solved by Dijkstra's algorithm. Many techniques are known to speed up this algorithm heuristically, while optimality of the solution can still be guaranteed. In m ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
Computing a shortest path from one node to another in a directed graph is a very common task in practice. This problem is classically solved by Dijkstra's algorithm. Many techniques are known to speed up this algorithm heuristically, while optimality of the solution can still be guaranteed. In most studies, such techniques are considered individually.
Dijkstra’s algorithm with Fibonacci heaps: An executable description
 in CHR. In 20th Workshop on Logic Programming (WLP’06
, 2006
"... Abstract. We construct a readable, compact and efficient implementation of Dijkstra’s shortest path algorithm and Fibonacci heaps using Constraint Handling Rules (CHR), which is increasingly used as a highlevel rulebased generalpurpose programming language. We measure its performance in different ..."
Abstract

Cited by 18 (11 self)
 Add to MetaCart
Abstract. We construct a readable, compact and efficient implementation of Dijkstra’s shortest path algorithm and Fibonacci heaps using Constraint Handling Rules (CHR), which is increasingly used as a highlevel rulebased generalpurpose programming language. We measure its performance in different CHR systems, investigating both the theoretical asymptotic complexity and the constant factors realized in practice. 1
Many distances in planar graphs
 In SODA ’06: Proc. 17th Symp. Discrete algorithms
, 2006
"... We show how to compute in O(n 4/3 log 1/3 n+n 2/3 k 2/3 logn) time the distance between k given pairs of vertices of a planar graph G with n vertices. This improves previous results whenever (n/logn) 5/6 ≤ k ≤ n 2 /log 6 n. As an application, we speed up previous algorithms for computing the dilatio ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
We show how to compute in O(n 4/3 log 1/3 n+n 2/3 k 2/3 logn) time the distance between k given pairs of vertices of a planar graph G with n vertices. This improves previous results whenever (n/logn) 5/6 ≤ k ≤ n 2 /log 6 n. As an application, we speed up previous algorithms for computing the dilation of geometric planar graphs. 1
Experimental Evaluation of a New Shortest Path Algorithm (Extended Abstract)
, 2002
"... We evaluate the practical eciency of a new shortest path algorithm for undirected graphs which was developed by the rst two authors. This algorithm works on the fundamental comparisonaddition model. Theoretically, this new algorithm outperforms Dijkstra's algorithm on sparse graphs for the al ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
We evaluate the practical eciency of a new shortest path algorithm for undirected graphs which was developed by the rst two authors. This algorithm works on the fundamental comparisonaddition model. Theoretically, this new algorithm outperforms Dijkstra's algorithm on sparse graphs for the allpairs shortest path problem, and more generally, for the problem of computing singlesource shortest paths from !(1) different sources. Our extensive experimental analysis demonstrates that this is also the case in practice. We present results which show the new algorithm to run faster than Dijkstra's on a variety of sparse graphs when the number of vertices ranges from a few thousand to a few million, and when computing singlesource shortest paths from as few as three different sources.
Allpairs nearly 2approximate shortest paths in O(n 2 polylog n) time
 In Proceedings of 22nd Annual Symposium on Theoretical Aspect of Computer Science, volume 3404 of LNCS
, 2005
"... Abstract. Let G(V, E) be an unweighted undirected graph on V  = n vertices. Let δ(u, v) denote the shortest distance between vertices u, v ∈ V. An algorithm is said to compute allpairs tapproximate shortestpaths/distances, for some t ≥ 1, if for each pair of vertices u, v ∈ V, the path/distance ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Abstract. Let G(V, E) be an unweighted undirected graph on V  = n vertices. Let δ(u, v) denote the shortest distance between vertices u, v ∈ V. An algorithm is said to compute allpairs tapproximate shortestpaths/distances, for some t ≥ 1, if for each pair of vertices u, v ∈ V, the path/distance reported by the algorithm is not longer/greater than t · δ(u, v). This paper presents two randomized algorithms for computing allpairs nearly 2approximate distances. The first algorithm takes expected O(m 2/3 n log n+n 2) time, and for any u, v ∈ V reports distance no greater than 2δ(u, v) + 1. Our second algorithm requires expected O(n 2 log 3/2) time, and for any u, v ∈ V reports distance bounded by 2δ(u, v) + 3. This paper also presents the first expected O(n 2) time algorithm to compute allpairs 3approximate distances. 1
A Faster Allpairs Shortest Path Algorithm for Realweighted Sparse Graphs
 In Proc. 29th Int'l Colloq. on Automata, Languages, and Programming (ICALP'02), LNCS
, 2002
"... We present a faster allpairs shortest paths algorithm for arbitrary realweighted directed graphs. ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a faster allpairs shortest paths algorithm for arbitrary realweighted directed graphs.