Results 1 
4 of
4
The Wellfounded Semantics Is the Principle of Inductive Definition
 Logics in Arti Intelligence
, 1998
"... . Existing formalisations of (transfinite) inductive definitions in constructive mathematics are reviewed and strong correspondences with LP under least model and perfect model semantics become apparent. I point to fundamental restrictions of these existing formalisations and argue that the wellfou ..."
Abstract

Cited by 43 (26 self)
 Add to MetaCart
. Existing formalisations of (transfinite) inductive definitions in constructive mathematics are reviewed and strong correspondences with LP under least model and perfect model semantics become apparent. I point to fundamental restrictions of these existing formalisations and argue that the wellfounded semantics (wfs) overcomes these problems and hence, provides a superior formalisation of the principle of inductive definition. The contribution of this study for LP is that it (re )introduces the knowledge theoretic interpretation of LP as a logic for representing definitional knowledge. I point to fundamental differences between this knowledge theoretic interpretation of LP and the more commonly known interpretations of LP as default theories or autoepistemic theories. The relevance is that differences in knowledge theoretic interpretation have strong impact on knowledge representation methodology and on extensions of the LP formalism, for example for representing uncertainty. Keywo...
A logic of nonmonotone inductive definitions
 ACM transactions on computational logic
, 2007
"... Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated i ..."
Abstract

Cited by 29 (16 self)
 Add to MetaCart
Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inflationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive Definitions (IDlogic). The semantics of the logic is strongly influenced by the wellfounded semantics of logic programming. This paper discusses the formalisation of different forms of (non)monotone induction by the wellfounded semantics and illustrates the use of the logic for formalizing mathematical and commonsense knowledge. To model different types of induction found in mathematics, we define several subclasses of definitions, and show that they are correctly formalized by the wellfounded semantics. We also present translations into classical first or second order logic. We develop modularity and totality results and demonstrate their use to analyze and simplify complex definitions. We illustrate the use of the logic for temporal reasoning. The logic formally extends Logic Programming, Abductive Logic Programming and Datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. Categories and Subject Descriptors:... [...]:... 1.
The metamathematics of ergodic theory
 THE ANNALS OF PURE AND APPLIED LOGIC
, 2009
"... The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theo ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns and recent applications to combinatorics and number theory force us to reconsider the constructive character of the theory and its methods. This paper surveys some recent contributions to the metamathematical study of ergodic theory, focusing on the mean and pointwise ergodic theorems and the Furstenberg structure theorem for measure preserving systems. In particular, I characterize the extent to which these theorems are nonconstructive, and explain how prooftheoretic methods can be used to locate their “constructive content.”
ITERATED QUOTIENTS OF THE LATTICE OF RECURSIVELY ENUMERABLE SETSt
, 1971
"... Let $ be the distributive lattice of recursively enumerable (r.e.) subsets of the set N of natural numbers under settheoretic inclusion, and let <^* be <f modulo the ideal of all finite subsets of N. (Consideration of the quotient lattice <f * is very natural, since most properties dealt w ..."
Abstract
 Add to MetaCart
Let $ be the distributive lattice of recursively enumerable (r.e.) subsets of the set N of natural numbers under settheoretic inclusion, and let <^* be <f modulo the ideal of all finite subsets of N. (Consideration of the quotient lattice <f * is very natural, since most properties dealt with in