Results 1 
2 of
2
Definitional interpreters for higherorder programming languages
 Reprinted from the proceedings of the 25th ACM National Conference
, 1972
"... Abstract. Higherorder programming languages (i.e., languages in which procedures or labels can occur as values) are usually defined by interpreters that are themselves written in a programming language based on the lambda calculus (i.e., an applicative language such as pure LISP). Examples include ..."
Abstract

Cited by 300 (2 self)
 Add to MetaCart
Abstract. Higherorder programming languages (i.e., languages in which procedures or labels can occur as values) are usually defined by interpreters that are themselves written in a programming language based on the lambda calculus (i.e., an applicative language such as pure LISP). Examples include McCarthy’s definition of LISP, Landin’s SECD machine, the Vienna definition of PL/I, Reynolds ’ definitions of GEDANKEN, and recent unpublished work by L. Morris and C. Wadsworth. Such definitions can be classified according to whether the interpreter contains higherorder functions, and whether the order of application (i.e., call by value versus call by name) in the defined language depends upon the order of application in the defining language. As an example, we consider the definition of a simple applicative programming language by means of an interpreter written in a similar language. Definitions in each of the above classifications are derived from one another by informal but constructive methods. The treatment of imperative features such as jumps and assignment is also discussed.
An Introduction to Polymorphic Lambda Calculus
 Logical Foundations of Functional Programming
, 1994
"... Introduction to the Polymorphic Lambda Calculus John C. Reynolds Carnegie Mellon University December 23, 1994 The polymorphic (or secondorder) typed lambda calculus was invented by JeanYves Girard in 1971 [11, 10], and independently reinvented by myself in 1974 [24]. It is extraordinary that ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Introduction to the Polymorphic Lambda Calculus John C. Reynolds Carnegie Mellon University December 23, 1994 The polymorphic (or secondorder) typed lambda calculus was invented by JeanYves Girard in 1971 [11, 10], and independently reinvented by myself in 1974 [24]. It is extraordinary that essentially the same programming language was formulated independently by the two of us, especially since we were led to the language by entirely different motivations. In my own case, I was seeking to extend conventional typed programming languages to permit the definition of "polymorphic" procedures that could accept arguments of a variety of types. I started with the ordinary typed lambda calculus and added the ability to pass types as parameters (an idea that was "in the air" at the time, e.g. [4]). For example, as in the ordinary typed lambda calculus one can write f int!int : x int : f(f (x)) to denote the "doubling" function for the type int, which accepts a function from integers