Results 1 
5 of
5
Mind change efficient learning
 Info. & Comp
, 2005
"... Abstract. This paper studies efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evi ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
(Show Context)
Abstract. This paper studies efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads to the notion of uniform mind change optimality. We characterize the structure of language classes that can be identified with at most α mind changes by some learner (not necessarily effective): A language class L is identifiable with α mind changes iff the accumulation order of L is at most α. Accumulation order is a classic concept from pointset topology. To aid the construction of learning algorithms, we show that the characteristic property of uniformly mind change optimal learners is that they output conjectures (languages) with maximal accumulation order. We illustrate the theory by describing mind change optimal learners for various problems such as identifying linear subspaces and onevariable patterns. 1
Parsimony Hierarchies for Inductive Inference
 JOURNAL OF SYMBOLIC LOGIC
, 2004
"... Freivalds defined an acceptable programming system independent criterion for learning programs for functions in which the final programs were required to be both correct and "nearly" minimal size, i.e, within a computable function of being purely minimal size. Kinber showed that this parsi ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
Freivalds defined an acceptable programming system independent criterion for learning programs for functions in which the final programs were required to be both correct and "nearly" minimal size, i.e, within a computable function of being purely minimal size. Kinber showed that this parsimony requirement on final programs limits learning power. However, in scientific inference, parsimony is considered highly desirable. A limcomputable function is (by definition) one calculable by a total procedure allowed to change its mind finitely many times about its output. Investigated is the possibility of assuaging somewhat the limitation on learning power resulting from requiring parsimonious final programs by use of criteria which require the final, correct programs to be "notsonearly" minimal size, e.g., to be within a limcomputable function of actual minimal size. It is shown that some parsimony in the final program is thereby retained, yet learning power strictly increases. Considered, then, are limcomputable functions as above but for which notations for constructive ordinals are used to bound the number of mind changes allowed regarding the output. This is a variant of an idea introduced by Freivalds and Smith. For this ordinal notation complexity bounded version of limcomputability, the power of the resultant learning criteria form finely graded, infinitely ramifying, infinite hierarchies intermediate between the computable and the limcomputable cases. Some of these hierarchies, for the natural notations determining them, are shown to be optimally tight.
Abstract
"... Alice and Bob want to know if two strings of length n are almost equal. That is, do they differ on at most a bits? Let 0 ≤ a ≤ n − 1. We show that any deterministic protocol, as well as any errorfree quantum protocol (C ∗ version), for this problem requires at least n − 2 bits of communication. We ..."
Abstract
 Add to MetaCart
Alice and Bob want to know if two strings of length n are almost equal. That is, do they differ on at most a bits? Let 0 ≤ a ≤ n − 1. We show that any deterministic protocol, as well as any errorfree quantum protocol (C ∗ version), for this problem requires at least n − 2 bits of communication. We show the same bounds for the problem of determining if two strings differ in exactly a bits. We also prove a lower bound of n/2 − 1 for errorfree Q ∗ quantum protocols. Our results are obtained by lowerbounding the ranks of the appropriate matrices. 1
Logically Reliable Inductive Inference
, 2005
"... This paper aims to be a friendly introduction to formal learning theory. I introduce key concepts at a slow pace, comparing and contrasting with other approaches to inductive inference such as confirmation theory. A number of examples are discussed, some in detail, such as Goodman’s Riddle of Induct ..."
Abstract
 Add to MetaCart
(Show Context)
This paper aims to be a friendly introduction to formal learning theory. I introduce key concepts at a slow pace, comparing and contrasting with other approaches to inductive inference such as confirmation theory. A number of examples are discussed, some in detail, such as Goodman’s Riddle of Induction. I outline some important results of formal learning theory that are of philosophical interest. Finally, I discuss recent developments in this approach to inductive inference.
Mind Change Optimal Learning: . . .
, 2007
"... Learning theories play a significant role to machine learning as computability and complexity theories to software engineering. Gold’s language learning paradigm is one cornerstone of modern learning theories. The aim of this thesis is to establish an inductive principle in Gold’s language learning ..."
Abstract
 Add to MetaCart
Learning theories play a significant role to machine learning as computability and complexity theories to software engineering. Gold’s language learning paradigm is one cornerstone of modern learning theories. The aim of this thesis is to establish an inductive principle in Gold’s language learning paradigm to guide the design of machine learning algorithms. We follow the common practice of using the number of mind changes to measure complexity of Gold’s language learning problems, and study efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads to the notion of mind change optimality. We characterize mind change complexity of language collections with Cantor’s classic concept of accumulation order. We show that the characteristic property of mind change optimal learners is that they output conjectures (languages) with maximal accumulation order. Therefore, we obtain an inductive principle in Gold’s language learning paradigm based on the simple topological concept accumulation order. The new