Results 1  10
of
21
Pure Pattern Type Systems
 In POPL’03
, 2003
"... We introduce a new framework of algebraic pure type systems in which we consider rewrite rules as lambda terms with patterns and rewrite rule application as abstraction application with builtin matching facilities. This framework, that we call “Pure Pattern Type Systems”, is particularly wellsuite ..."
Abstract

Cited by 43 (20 self)
 Add to MetaCart
We introduce a new framework of algebraic pure type systems in which we consider rewrite rules as lambda terms with patterns and rewrite rule application as abstraction application with builtin matching facilities. This framework, that we call “Pure Pattern Type Systems”, is particularly wellsuited for the foundations of programming (meta)languages and proof assistants since it provides in a fully unified setting higherorder capabilities and pattern matching ability together with powerful type systems. We prove some standard properties like confluence and subject reduction for the case of a syntactic theory and under a syntactical restriction over the shape of patterns. We also conjecture the strong normalization of typable terms. This work should be seen as a contribution to a formal connection between logics and rewriting, and a step towards new proof engines based on the CurryHoward isomorphism.
Generalized Rewrite Theories
 PROC. 30TH INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING (ICALP 2003), VOLUME 2719 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2003
"... Since its introduction, more than a decade ago, rewriting logic has attracted the interest of both theorists and practitioners, who have contributed in showing its generality as a semantic and logical framework and also as a programming paradigm. The experimentation conducted in these years has s ..."
Abstract

Cited by 35 (15 self)
 Add to MetaCart
Since its introduction, more than a decade ago, rewriting logic has attracted the interest of both theorists and practitioners, who have contributed in showing its generality as a semantic and logical framework and also as a programming paradigm. The experimentation conducted in these years has suggested that some significant extensions to the original definition of the logic would be very useful in practice. In particular, the Maude system now supports subsorting and conditions in the equational logic for data, and also frozen arguments to block undesired nested rewritings; moreover, it allows equality and membership assertions in rule conditions. In this paper, we give a detailed presentation of the inference rules, model theory, and completeness of such generalized rewrite theories.
Matching Power
 Proceedings of RTA’2001, Lecture Notes in Computer Science, Utrecht (The Netherlands
, 2001
"... www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We pr ..."
Abstract

Cited by 31 (20 self)
 Add to MetaCart
www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We provide extensive examples of the calculus, and we focus on its ability to represent some object oriented calculi, namely the Lambda Calculus of Objects of Fisher, Honsell, and Mitchell, and the Object Calculus of Abadi and Cardelli. Furthermore, the calculus allows us to get object oriented constructions unreachable in other calculi. In summa, we intend to show that because of its matching ability, the Rho Calculus represents a lingua franca to naturally encode many paradigms of computations. This enlightens the capabilities of the rewriting calculus based language ELAN to be used as a logical as well as powerful semantical framework. 1
Rewriting calculus with fixpoints: Untyped and firstorder systems
 In Postproceedings of TYPES, Lecture Notes in Computer Science
, 2003
"... Abstract The rewriting calculus, also called ρcalculus, is a framework embedding λcalculus and rewriting capabilities, by allowing abstraction not only on variables but also on patterns. The higherorder mechanisms of the λcalculus and the pattern matching facilities of the rewriting are then bot ..."
Abstract

Cited by 26 (10 self)
 Add to MetaCart
Abstract The rewriting calculus, also called ρcalculus, is a framework embedding λcalculus and rewriting capabilities, by allowing abstraction not only on variables but also on patterns. The higherorder mechanisms of the λcalculus and the pattern matching facilities of the rewriting are then both available at the same level. Many type systems for the λcalculus can be generalized to the ρcalculus: in this paper, we study extensively a firstorder ρcalculus à la Church, called ρ stk The type system of ρ stk � allows one to type (object oriented flavored) fixpoints, leading to an expressive and safe calculus. In particular, using pattern matching, one can encode and typecheck term rewriting systems in a natural and automatic way. Therefore, we can see our framework as a starting point for the theoretical basis of a powerful typed rewritingbased language.
Typed Generic Traversal With Term Rewriting Strategies
 Journal of Logic and Algebraic Programming
, 2002
"... A typed model of strategic term rewriting is developed. The key innovation is that generic. The calculus traversal is covered. To this end, we define a typed rewriting calculus S ′ γ employs a manysorted type system extended by designated generic strategy types γ. We consider two generic strategy t ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
A typed model of strategic term rewriting is developed. The key innovation is that generic. The calculus traversal is covered. To this end, we define a typed rewriting calculus S ′ γ employs a manysorted type system extended by designated generic strategy types γ. We consider two generic strategy types, namely the types of typepreserving and typeunifying strategies. S ′ γ offers traversal combinators to construct traversals or schemes thereof from manysorted and generic strategies. The traversal combinators model different forms of onestep traversal, that is, they process the immediate subterms of a given term without anticipating any scheme of recursion into terms. To inhabit generic types, we need to add a fundamental combinator to lift a manysorted strategy s to a generic type γ. This step is called strategy extension. The semantics of the corresponding combinator states that s is only applied if the type of the term at hand fits, otherwise the extended strategy fails. This approach dictates that the semantics of strategy application must be typedependent to a certain extent. Typed strategic term rewriting with coverage of generic term traversal is a simple but expressive model of generic programming. It has applications in program
Rewriting calculus with(out) types
 Proceedings of the fourth workshop on rewriting logic and applications
, 2002
"... The last few years have seen the development of a new calculus which can be considered as an outcome of the last decade of various researches on (higher order) term rewriting systems, and lambda calculi. In the Rewriting Calculus (or Rho Calculus, ρCal), algebraic rules are considered as sophisticat ..."
Abstract

Cited by 22 (13 self)
 Add to MetaCart
The last few years have seen the development of a new calculus which can be considered as an outcome of the last decade of various researches on (higher order) term rewriting systems, and lambda calculi. In the Rewriting Calculus (or Rho Calculus, ρCal), algebraic rules are considered as sophisticated forms of “lambda terms with patterns”, and rule applications as lambda applications with pattern matching facilities. The calculus can be customized to work modulo sophisticated theories, like commutativity, associativity, associativitycommutativity, etc. This allows us to encode complex structures such as list, sets, and more generally objects. The calculus can either be presented “à la Curry ” or “à la Church ” without sacrificing readability and without complicating too much the metatheory. Many static type systems can be easily pluggedin on top of the calculus in the spirit of the rich typeoriented literature. The Rewriting Calculus could represent a lingua franca to encode many paradigms of computations together with a formal basis used to build powerful theorem provers based on lambda calculus and efficient rewriting, and a step towards new proof engines based on the CurryHoward isomorphism. 1
Faster Proof Checking in the Edinburgh Logical Framework
 In 18th International Conference on Automated Deduction
, 2002
"... This paper describes optimizations for checking proofs represented in the Edinburgh Logical Framework (LF). The optimizations allow large proofs to be checked eciently which cannot feasibly be checked using the standard algorithm for LF. The crucial optimization is a form of result caching. To f ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
This paper describes optimizations for checking proofs represented in the Edinburgh Logical Framework (LF). The optimizations allow large proofs to be checked eciently which cannot feasibly be checked using the standard algorithm for LF. The crucial optimization is a form of result caching. To formalize this optimization, a path calculus for LF is developed and shown equivalent to a standard calculus.
Abstract saturationbased inference
 IN PROCEEDINGS OF THE 18TH ANNUAL SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 2003
"... Solving goals—like deciding word problems or resolving constraints—is much easier in some theory presentations than in others. What have been called “completion processes”, in particular in the study of equational logic, involve finding appropriate presentations of a given theory to solve easily a g ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Solving goals—like deciding word problems or resolving constraints—is much easier in some theory presentations than in others. What have been called “completion processes”, in particular in the study of equational logic, involve finding appropriate presentations of a given theory to solve easily a given class of problems. We provide a general prooftheoretic setting within which completionlike processes can be modelled and studied. This framework centers around wellfounded orderings of proofs. It allows for abstract definitions and very general characterizations of saturation processes and redundancy criteria.
Strategic term rewriting and its application to a VDMSL to SQL conversion
 In Proceedings of the Formal Methods Symposium (FM’05
, 2005
"... Abstract. We constructed a tool, called VooDooM, which converts datatypes in VDMSL into SQL relational data models. The conversion involves transformation of algebraic types to maps and products, and pointer introduction. The conversion is specified as a theory of refinement by calculation. The imp ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
Abstract. We constructed a tool, called VooDooM, which converts datatypes in VDMSL into SQL relational data models. The conversion involves transformation of algebraic types to maps and products, and pointer introduction. The conversion is specified as a theory of refinement by calculation. The implementation technology is strategic term rewriting in Haskell, as supported by the Strafunski bundle. Due to these choices of theory and technology, the road from theory to practise is straightforward. Keywords: Strategic term rewriting, program calculation, VDM, SQL. 1
Generic typepreserving traversal strategies
 PROC. INTERNATIONAL WORKSHOP ON REDUCTION STRATEGIES IN REWRITING AND PROGRAMMING (WRS 2001), VOLUME SPUPV 2359
, 2001
"... A typed model of strategic rewriting with coverage of generic traversals is developed. The corresponding calculus offers, for example, a strategy operator 2 (), which applies the argument strategy to all immediate subterms. To provide a typeful model for generic strategies, one has to identify signa ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
A typed model of strategic rewriting with coverage of generic traversals is developed. The corresponding calculus offers, for example, a strategy operator 2 (), which applies the argument strategy to all immediate subterms. To provide a typeful model for generic strategies, one has to identify signatureindependent, that is, generic types. In the present article, we restrict ourselves to TP  the generic type of all TypePreserving strategies. TP is easily integrated into a standard manysorted type system for rewriting. To inhabit TP, we need to introduce a (leftbiased) typedriven choice operator & ,. The operator applies its left argument (corresponding to a manysorted strategy) if the type of the given term ts, and the operator resorts to the right argument (corresponding to a generic default) otherwise. This approach dictates that the semantics of strategy application must be typedependent to a certain extent.