Results 1 
2 of
2
Universal Limit Laws for Depths in Random Trees
 SIAM Journal on Computing
, 1998
"... Random binary search trees, bary search trees, medianof(2k+1) trees, quadtrees, simplex trees, tries, and digital search trees are special cases of random split trees. For these trees, we o#er a universal law of large numbers and a limit law for the depth of the last inserted point, as well as a ..."
Abstract

Cited by 50 (8 self)
 Add to MetaCart
Random binary search trees, bary search trees, medianof(2k+1) trees, quadtrees, simplex trees, tries, and digital search trees are special cases of random split trees. For these trees, we o#er a universal law of large numbers and a limit law for the depth of the last inserted point, as well as a law of large numbers for the height.
Area inequalities for embedded disks spanning unknotted curves
 2003, arXiv:math.DG/0306313. EFFICIENTLY BOUND 4MANIFOLDS 43
"... We show that a smooth unknotted curve in R 3 satisfies an isoperimetric inequality that bounds the area of an embedded disk spanning the curve in terms of two parameters: the length L of the curve and the thickness r (maximal radius of an embedded tubular neighborhood) of the curve. For fixed length ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We show that a smooth unknotted curve in R 3 satisfies an isoperimetric inequality that bounds the area of an embedded disk spanning the curve in terms of two parameters: the length L of the curve and the thickness r (maximal radius of an embedded tubular neighborhood) of the curve. For fixed length, the expression giving the upper bound on the area grows exponentially in 1/r 2. In the direction of lower bounds, we give a sequence of length one curves with r→0for which the area of any spanning disk is bounded from below by a function that grows exponentially with 1/r. In particular, given any constant A, there is a smooth, unknotted length one curve for which the area of a smallest embedded spanning disk is greater than A. 1