Results 1  10
of
50
Unsupervised learning of finite mixture models
 IEEE Transactions on pattern analysis and machine intelligence
, 2002
"... AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization ..."
Abstract

Cited by 267 (20 self)
 Add to MetaCart
AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space. The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments involving Gaussian mixtures. These experiments testify for the good performance of our approach. Index TermsÐFinite mixtures, unsupervised learning, model selection, minimum message length criterion, Bayesian methods, expectationmaximization algorithm, clustering. æ 1
Variational Inference for Bayesian Mixtures of Factor Analysers
 In Advances in Neural Information Processing Systems 12
, 2000
"... We present an algorithm that infers the model structure of a mixture of factor analysers using an ecient and deterministic variational approximation to full Bayesian integration over model parameters. This procedure can automatically determine the optimal number of components and the local dimension ..."
Abstract

Cited by 148 (16 self)
 Add to MetaCart
We present an algorithm that infers the model structure of a mixture of factor analysers using an ecient and deterministic variational approximation to full Bayesian integration over model parameters. This procedure can automatically determine the optimal number of components and the local dimensionality of each component (i.e. the number of factors in each factor analyser). Alternatively it can be used to infer posterior distributions over number of components and dimensionalities. Since all parameters are integrated out the method is not prone to over tting. Using a stochastic procedure for adding components it is possible to perform the variational optimisation incrementally and to avoid local maxima. Results show that the method works very well in practice and correctly infers the number and dimensionality of nontrivial synthetic examples. By importance sampling from the variational approximation we show how to obtain unbiased estimates of the true evidence, the exa...
Probabilistic Independent Component Analysis
, 2003
"... Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ability t ..."
Abstract

Cited by 74 (12 self)
 Add to MetaCart
Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ability to quantify statistical significance. We present an integrated approach to Probabilistic ICA for FMRI data that allows for nonsquare mixing in the presence of Gaussian noise. We employ an objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e. the number of activation and nonGaussian noise sources. Reduction of the data to this 'true' subspace before the ICA decomposition automatically results in an estimate of the noise, leading to the ability to assign significance to voxels in ICA spatial maps. Estimation of the number of intrinsic sources not only enables us to carry out probabilistic modelling, but also achieves an asymptotically unique decomposition of the data. This reduces problems of interpretation, as each final independent component is now much more likely to be due to only one physical or physiological process. We also describe other improvements to standard ICA, such as temporal prewhitening and variance normafisation of timeseries, the latter being particularly useful in the context of dimensionality reduction when weak activation is present. We discuss the use of prior information about the spatiotemporal nature of the source processes, and an alternativehypothesis testing approach for inference, using Gaussian mixture models. The performance of our approach is illustrated and evaluated on real and complex artificial FMRI data, and compared to the spatiotemporal accuracy of restfits obtaine...
Combining multiple clusterings using evidence accumulation
 IEEE Transaction on Pattern Analysis and Machine Intelligence
, 2005
"... We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: (1) applying differ ..."
Abstract

Cited by 51 (5 self)
 Add to MetaCart
We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: (1) applying different clustering algorithms, and (2) applying the same clustering algorithm with different values of parameters or initializations. Further, combinations of different data representations (feature spaces) and clustering algorithms can also provide a multitude of significantly different data partitionings. We propose a simple framework for extracting a consistent clustering, given the various partitions in a clustering ensemble. According to the EAC concept, each partition is viewed as an independent evidence of data organization, individual data partitions being combined, based on a voting mechanism, to generate a new n × n similarity matrix between the n patterns. The final data partition of the n patterns is obtained by applying a hierarchical agglomerative clustering algorithm on this matrix. We have developed a theoretical framework for the analysis of the proposed clustering combination strategy and its evaluation, based on the concept of mutual information between data partitions. Stability of the results is evaluated using bootstrapping techniques. A detailed discussion of an evidence accumulationbased clustering algorithm, using a split and merge strategy based on the Kmeans clustering algorithm, is presented. Experimental results of the proposed method on several synthetic and real data sets are compared with other combination strategies, and with individual clustering results produced by well known clustering algorithms.
Finding the number of clusters in a data set: An information theoretic approach
 Journal of the American Statistical Association
, 2003
"... One of the most difficult problems in cluster analysis is the identification of the number of groups in a data set. Most previously suggested approaches to this problem are either somewhat ad hoc or require parametric assumptions and complicated calculations. In this paper we develop a simple yet po ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
One of the most difficult problems in cluster analysis is the identification of the number of groups in a data set. Most previously suggested approaches to this problem are either somewhat ad hoc or require parametric assumptions and complicated calculations. In this paper we develop a simple yet powerful nonparametric method for choosing the number of clusters based on distortion, a quantity that measures the average distance, per dimension, between each observation and its closest cluster center. Our technique is computationally efficient and straightforward to implement. We demonstrate empirically its effectiveness, not only for choosing the number of clusters but also for identifying underlying structure, on a wide range of simulated and real world data sets. In addition, we give a rigorous theoretical justification for the method based on information theoretic ideas. Specifically, results from the subfield of electrical engineering known as rate distortion theory allow us to describe the behavior of the distortion in both the presence and absence of clustering. Finally, we note that these ideas potentially can be extended to a wide range of other statistical model selection problems. 1
Beyond tracking: modelling activity and understanding behaviour
 International Journal of Computer Vision
, 2006
"... In this work, we present a unified bottomup and topdown automatic model selection based approach for modelling complex activities of multiple objects in cluttered scenes. An activity of multiple objects is represented based on discrete scene events and their behaviours are modelled by reasoning ab ..."
Abstract

Cited by 48 (12 self)
 Add to MetaCart
In this work, we present a unified bottomup and topdown automatic model selection based approach for modelling complex activities of multiple objects in cluttered scenes. An activity of multiple objects is represented based on discrete scene events and their behaviours are modelled by reasoning about the temporal and causal correlations among different events. This is significantly different from the majority of the existing techniques that are centred on object tracking followed by trajectory matching. In our approach, objectindependent events are detected and classified by unsupervised clustering using ExpectationMaximisation (EM) and classified using automatic model selection based on Schwarz’s Bayesian Information Criterion (BIC). Dynamic Probabilistic Networks (DPNs) are formulated for modelling the temporal and causal correlations among discrete events for robust and holistic scenelevel behaviour interpretation. In particular, we developed a Dynamically MultiLinked Hidden Markov Model (DMLHMM) based on the discovery of salient dynamic interlinks among multiple temporal processes corresponding to multiple event classes. A DMLHMM is built using BIC based factorisation resulting in its topology being intrinsically determined by the underlying causality and temporal order among events. Extensive experiments are conducted on modelling activities captured in different indoor and
Finding Consistent Clusters in Data Partitions
 In Proc. 3d Int. Workshop on Multiple Classifier
, 2001
"... Abstract. Given an arbitrary data set, to which no particular parametrical, statistical or geometrical structure can be assumed, different clustering algorithms will in general produce different data partitions. In fact, several partitions can also be obtained by using a single clustering algorithm ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
Abstract. Given an arbitrary data set, to which no particular parametrical, statistical or geometrical structure can be assumed, different clustering algorithms will in general produce different data partitions. In fact, several partitions can also be obtained by using a single clustering algorithm due to dependencies on initialization or the selection of the value of some design parameter. This paper addresses the problem of finding consistent clusters in data partitions, proposing the analysis of the most common associations performed in a majority voting scheme. Combination of clustering results are performed by transforming data partitions into a coassociation sample matrix, which maps coherent associations. This matrix is then used to extract the underlying consistent clusters. The proposed methodology is evaluated in the context of kmeans clustering, a new clustering algorithm votingkmeans, being presented. Examples, using both simulated and real data, show how this majority voting combination scheme simultaneously handles the problems of selecting the number of clusters, and dependency on initialization. Furthermore, resulting clusters are not constrained to be hyperspherically shaped. 1
Modefinding for mixtures of Gaussian distributions
 Dept. of Computer Science, University of Sheffield
, 1999
"... I consider the problem of finding all the modes of a mixture of multivariate Gaussian distributions, which has applications in clustering and regression. I derive exact formulas for the gradient and Hessian and give a partial proof that the number of modes cannot be more than the number of component ..."
Abstract

Cited by 34 (8 self)
 Add to MetaCart
I consider the problem of finding all the modes of a mixture of multivariate Gaussian distributions, which has applications in clustering and regression. I derive exact formulas for the gradient and Hessian and give a partial proof that the number of modes cannot be more than the number of components, and are contained in the convex hull of the component centroids. Then, I develop two exhaustive mode search algorithms: one based on combined quadratic maximisation and gradient ascent and the other one based on a fixedpoint iterative scheme. Appropriate values for the search control parameters are derived by taking into account theoretical results regarding the bounds for the gradient and Hessian of the mixture. The significance of the modes is quantified locally (for each mode) by error bars, or confidence intervals (estimated using the values of the Hessian at each mode); and globally by the sparseness of the mixture, measured by its differential entropy (estimated through bounds). I conclude with some reflections about bumpfinding.
S.: Video behavior profiling for anomaly detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2008
"... Abstract—This paper aims to address the problem of modeling video behavior captured in surveillance videos for the applications of online normal behavior recognition and anomaly detection. A novel framework is developed for automatic behavior profiling and online anomaly sampling/detection without a ..."
Abstract

Cited by 33 (8 self)
 Add to MetaCart
Abstract—This paper aims to address the problem of modeling video behavior captured in surveillance videos for the applications of online normal behavior recognition and anomaly detection. A novel framework is developed for automatic behavior profiling and online anomaly sampling/detection without any manual labeling of the training data set. The framework consists of the following key components: 1) A compact and effective behavior representation method is developed based on discretescene event detection. The similarity between behavior patterns are measured based on modeling each pattern using a Dynamic Bayesian Network (DBN). 2) The natural grouping of behavior patterns is discovered through a novel spectral clustering algorithm with unsupervised model selection and feature selection on the eigenvectors of a normalized affinity matrix. 3) A composite generative behavior model is constructed that is capable of generalizing from a small training set to accommodate variations in unseen normal behavior patterns. 4) A runtime accumulative anomaly measure is introduced to detect abnormal behavior, whereas normal behavior patterns are recognized when sufficient visual evidence has become available based on an online Likelihood Ratio Test (LRT) method. This ensures robust and reliable anomaly detection and normal behavior recognition at the shortest possible time. The effectiveness and robustness of our approach is demonstrated through experiments using noisy and sparse data sets collected from both indoor and outdoor surveillance scenarios. In particular, it is shown that a behavior model trained using an unlabeled data set is superior to those trained using the same but labeled data set in detecting anomaly from an unseen video. The experiments also suggest that our online LRTbased behavior recognition approach is advantageous over the commonly used Maximum Likelihood (ML) method in differentiating ambiguities among different behavior classes observed online.
Bayesian regularization for normal mixture estimation and modelbased clustering
, 2005
"... Normal mixture models are widely used for statistical modeling of data, including cluster analysis. However maximum likelihood estimation (MLE) for normal mixtures using the EM algorithm may fail as the result of singularities or degeneracies. To avoid this, we propose replacing the MLE by a maximum ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
Normal mixture models are widely used for statistical modeling of data, including cluster analysis. However maximum likelihood estimation (MLE) for normal mixtures using the EM algorithm may fail as the result of singularities or degeneracies. To avoid this, we propose replacing the MLE by a maximum a posteriori (MAP) estimator, also found by the EM algorithm. For choosing the number of components and the model parameterization, we propose a modified version of BIC, where the likelihood is evaluated at the MAP instead of the MLE. We use a highly dispersed proper conjugate prior, containing a small fraction of one observation’s worth of information. The resulting method avoids degeneracies and singularities, but when these are not present it gives similar results to the standard method using MLE, EM and BIC. Key words: BIC; EM algorithm; mixture models; modelbased clustering; conjugate prior; posterior mode. 1