Results 1  10
of
556
Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review
 Journal of the American Statistical Association
, 1996
"... A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise ..."
Abstract

Cited by 220 (6 self)
 Add to MetaCart
A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing theoretical convergence bounds holds promise for the future but currently has yielded relatively little that is of practical use in applied work. Consequently, most MCMC users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. After giving a brief overview of the area, we provide an expository review of thirteen convergence diagnostics, describing the theoretical basis and practical implementation of each. We then compare their performance in two simple models and conclude that all the methods can fail to detect the sorts of convergence failure they were designed to identify. We thus recommend a combination of strategies aimed at evaluating and accelerating MCMC sampler conver...
General methods for monitoring convergence of iterative simulations
 J. Comput. Graph. Statist
, 1998
"... We generalize the method proposed by Gelman and Rubin (1992a) for monitoring the convergence of iterative simulations by comparing between and within variances of multiple chains, in order to obtain a family of tests for convergence. We review methods of inference from simulations in order to develo ..."
Abstract

Cited by 202 (8 self)
 Add to MetaCart
We generalize the method proposed by Gelman and Rubin (1992a) for monitoring the convergence of iterative simulations by comparing between and within variances of multiple chains, in order to obtain a family of tests for convergence. We review methods of inference from simulations in order to develop convergencemonitoring summaries that are relevant for the purposes for which the simulations are used. We recommend applying a battery of tests for mixing based on the comparison of inferences from individual sequences and from the mixture of sequences. Finally, we discuss multivariate analogues, for assessing convergence of several parameters simultaneously.
Using simulation methods for Bayesian econometric models: Inference, development and communication
 Econometric Review
, 1999
"... This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a ..."
Abstract

Cited by 199 (15 self)
 Add to MetaCart
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators. A theme of the paper is the practicality of subjective Bayesian methods. To this end, the paper describes publicly available software for Bayesian inference, model development, and communication and provides illustrations using two simple econometric models. *This paper was originally prepared for the Australasian meetings of the Econometric Society in Melbourne, Australia,
Posterior Predictive Assessment of Model Fitness Via Realized Discrepancies
 Statistica Sinica
, 1996
"... Abstract: This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The B ..."
Abstract

Cited by 166 (28 self)
 Add to MetaCart
Abstract: This paper considers Bayesian counterparts of the classical tests for goodness of fit and their use in judging the fit of a single Bayesian model to the observed data. We focus on posterior predictive assessment, in a framework that also includes conditioning on auxiliary statistics. The Bayesian formulation facilitates the construction and calculation of a meaningful reference distribution not only for any (classical) statistic, but also for any parameterdependent “statistic ” or discrepancy. The latter allows us to propose the realized discrepancy assessment of model fitness, which directly measures the true discrepancy between data and the posited model, for any aspect of the model which we want to explore. The computation required for the realized discrepancy assessment is a straightforward byproduct of the posterior simulation used for the original Bayesian analysis. We illustrate with three applied examples. The first example, which serves mainly to motivate the work, illustrates the difficulty of classical tests in assessing the fitness of a Poisson model to a positron emission tomography image that is constrained to be nonnegative. The second and third examples illustrate the details of the posterior predictive approach in two problems: estimation in a model with inequality constraints on the parameters, and estimation in a mixture model. In all three examples, standard test statistics (either a χ 2 or a likelihood ratio) are not pivotal: the difficulty is not just how to compute the reference distribution for the test, but that in the classical framework no such distribution exists, independent of the unknown model parameters. Key words and phrases: Bayesian pvalue, χ 2 test, discrepancy, graphical assessment, mixture model, model criticism, posterior predictive pvalue, prior predictive
Simulating Normalized Constants: From Importance Sampling to Bridge Sampling to Path Sampling
 Statistical Science, 13, 163–185. COMPARISON OF METHODS FOR COMPUTING BAYES FACTORS 435
, 1998
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 145 (4 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
 Statistica Sinica
, 1996
"... Abstract: Let pi(w),i =1, 2, be two densities with common support where each density is known up to a normalizing constant: pi(w) =qi(w)/ci. We have draws from each density (e.g., via Markov chain Monte Carlo), and we want to use these draws to simulate the ratio of the normalizing constants, c1/c2. ..."
Abstract

Cited by 109 (4 self)
 Add to MetaCart
Abstract: Let pi(w),i =1, 2, be two densities with common support where each density is known up to a normalizing constant: pi(w) =qi(w)/ci. We have draws from each density (e.g., via Markov chain Monte Carlo), and we want to use these draws to simulate the ratio of the normalizing constants, c1/c2. Such a computational problem is often encountered in likelihood and Bayesian inference, and arises in fields such as physics and genetics. Many methods proposed in statistical and other literature (e.g., computational physics) for dealing with this problem are based on various special cases of the following simple identity: c1 c2 = E2[q1(w)α(w)] E1[q2(w)α(w)]. Here Ei denotes the expectation with respect to pi (i =1, 2), and α is an arbitrary function such that the denominator is nonzero. A main purpose of this paper is to provide a theoretical study of the usefulness of this identity, with focus on (asymptotically) optimal and practical choices of α. Using a simple but informative example, we demonstrate that with sensible (not necessarily optimal) choices of α, we can reduce the simulation error by orders of magnitude when compared to the conventional importance sampling method, which corresponds to α =1/q2. We also introduce several generalizations of this identity for handling more complicated settings (e.g., estimating several ratios simultaneously) and pose several open problems that appear to have practical as well as theoretical value. Furthermore, we discuss related theoretical and empirical work.
General state space Markov chains and MCMC algorithm
 PROBABILITY SURVEYS
, 2004
"... This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform e ..."
Abstract

Cited by 106 (26 self)
 Add to MetaCart
This paper surveys various results about Markov chains on general (noncountable) state spaces. It begins with an introduction to Markov chain Monte Carlo (MCMC) algorithms, which provide the motivation and context for the theory which follows. Then, sufficient conditions for geometric and uniform ergodicity are presented, along with quantitative bounds on the rate of convergence to stationarity. Many of these results are proved using direct coupling constructions based on minorisation and drift conditions. Necessary and sufficient conditions for Central Limit Theorems (CLTs) are also presented, in some cases proved via the Poisson Equation or direct regeneration constructions. Finally, optimal scaling and weak convergence results for MetropolisHastings algorithms are discussed. None of the results presented is new, though many of the proofs are. We also describe some Open Problems.
Markov Chain Monte Carlo Simulation Methods in Econometrics
, 1993
"... We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literat ..."
Abstract

Cited by 90 (5 self)
 Add to MetaCart
We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the presentation and explanation of applications to important models that are studied in econometrics. We include a discussion of some implementation issues, the use of the methods in connection with the EM algorithm, and how the methods can be helpful in model specification questions. Many of the applications of these methods are of particular interest to Bayesians, but we also point out ways in which frequentist statisticians may find the techniques useful.
An exact likelihood analysis of the multinomial probit model
, 1994
"... We develop new methods for conducting a finite sample, likelihoodbased analysis of the multinomial probit model. Using a variant of the Gibbs sampler, an algorithm is developed to draw from the exact posterior of the multinomial probit model with correlated errors. This approach avoids direct evalu ..."
Abstract

Cited by 89 (4 self)
 Add to MetaCart
We develop new methods for conducting a finite sample, likelihoodbased analysis of the multinomial probit model. Using a variant of the Gibbs sampler, an algorithm is developed to draw from the exact posterior of the multinomial probit model with correlated errors. This approach avoids direct evaluation of the likelihood and, thus, avoids the problems associated with calculating choice probabilities which affect both the standard likelihood and method of simulated moments approaches. Both simulated and actual consumer panel data are used to fit sixdimensional choice models. We also develop methods for analyzing random coefficient and multiperiod probit models.