Results 1  10
of
59
An Implementation of Narrowing Strategies
 Journal of the ACM
, 2001
"... This paper describes an implementation of narrowing, an essential component of implementations of modern functional logic languages. These implementations rely on narrowing, in particular on some optimal narrowing strategies, to execute functional logic programs. We translate functional logic progra ..."
Abstract

Cited by 294 (123 self)
 Add to MetaCart
This paper describes an implementation of narrowing, an essential component of implementations of modern functional logic languages. These implementations rely on narrowing, in particular on some optimal narrowing strategies, to execute functional logic programs. We translate functional logic programs into imperative (Java) programs without an intermediate abstract machine. A central idea of our approach is the explicit representation and processing of narrowing computations as data objects. This enables the implementation of operationally complete strategies (i.e., without backtracking) or techniques for search control (e.g., encapsulated search). Thanks to the use of an intermediate and portable representation of programs, our implementation is general enough to be used as a common back end for a wide variety of functional logic languages.
OrderSorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations
 Theoretical Computer Science
, 1992
"... This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of pol ..."
Abstract

Cited by 208 (33 self)
 Add to MetaCart
This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of polymorphism and overloading, partial operations (as total on equationally defined subsorts), exception handling, and an operational semantics based on term rewriting. We give the basic algebraic constructions for OSA, including quotient, image, product and term algebra, and we prove their basic properties, including Quotient, Homomorphism, and Initiality Theorems. The paper's major mathematical results include a notion of OSA deduction, a Completeness Theorem for it, and an OSA Birkhoff Variety Theorem. We also develop conditional OSA, including Initiality, Completeness, and McKinseyMalcev Quasivariety Theorems, and we reduce OSA to (conditional) MSA, which allows lifting many known MSA results to OSA. Retracts, which intuitively are left inverses to subsort inclusions, provide relatively inexpensive runtime error handling. We show that it is safe to add retracts to any OSA signature, in the sense that it gives rise to a conservative extension. A final section compares and contrasts many different approaches to OSA. This paper also includes several examples demonstrating the flexibility and applicability of OSA, including some standard benchmarks like STACK and LIST, as well as a much more substantial example, the number hierarchy from the naturals up to the quaternions.
Definitional Trees
 In Proc. of the 3rd International Conference on Algebraic and Logic Programming
, 1992
"... . Rewriting is a computational paradigm that specifies the actions, but not the control. We introduce a hierarchical structure representing, at a high level of abstraction, a form of control. Its application solves a specific problem arising in the design and implementation of inherently sequential, ..."
Abstract

Cited by 153 (39 self)
 Add to MetaCart
. Rewriting is a computational paradigm that specifies the actions, but not the control. We introduce a hierarchical structure representing, at a high level of abstraction, a form of control. Its application solves a specific problem arising in the design and implementation of inherently sequential, lazy, functional programming languages based on rewriting. For example, we show how to extend the expressive power of Log(F ) and how to improve the efficiency of an implementation of BABEL. Our framework provides a notion of degree of parallelism of an operation and shows that the elements of a necessary set of redexes are related by an andor relation. Both concepts find application in parallel implementations of rewriting. In an environment in which computations can be executed in parallel we are able to detect sequential computations in order to minimize overheads and/or optimize execution. Conversely, we are able to detect when inherently sequential computations can be executed in para...
ContextSensitive Computations in Functional and Functional Logic Programs
 JOURNAL OF FUNCTIONAL AND LOGIC PROGRAMMING
, 1998
"... ..."
Disunification: a Survey
 Computational Logic: Essays in Honor of Alan
, 1991
"... Solving an equation in an algebra of terms is known as unification. Solving more complex formulas combining equations and involving in particular negation is called disunification. With such a broad definition, many works fall into the scope of disunification. The goal of this paper is to survey the ..."
Abstract

Cited by 57 (9 self)
 Add to MetaCart
Solving an equation in an algebra of terms is known as unification. Solving more complex formulas combining equations and involving in particular negation is called disunification. With such a broad definition, many works fall into the scope of disunification. The goal of this paper is to survey these works and bring them together in a same framework. R'esum'e On appelle habituellement (algorithme d') unification un algorithme de r'esolution d'une 'equation dans une alg`ebre de termes. La r'esolution de formules plus complexes, comportant en particulier des n'egations, est appel'ee ici disunification. Avec une d'efinition aussi 'etendue, de nombreux travaux peuvent etre consid'er'es comme portant sur la disunification. L'objet de cet article de synth`ese est de rassembler tous ces travaux dans un meme formalisme. Laboratoire de Recherche en Informatique, Bat. 490, Universit'e de ParisSud, 91405 ORSAY cedex, France. Email: comon@lri.lri.fr i Contents 1 Syntax 5 1.1 Basic Defini...
Automatically Checking an Implementation against Its Formal Specification
 IEEE Transactions on Software Engineering
, 2000
"...  ..."
Parallel Evaluation Strategies for Functional Logic Languages
 In Proc. of the Fourteenth International Conference on Logic Programming (ICLP’97
, 1997
"... We introduce novel, sound, complete, and locally optimal evaluation strategies for functional logic programming languages. Our strategies combine, in a nontrivial way, two landmark techniques in this area: the computation of unifiers performed by needed narrowing in inductively sequential rewrite s ..."
Abstract

Cited by 48 (27 self)
 Add to MetaCart
We introduce novel, sound, complete, and locally optimal evaluation strategies for functional logic programming languages. Our strategies combine, in a nontrivial way, two landmark techniques in this area: the computation of unifiers performed by needed narrowing in inductively sequential rewrite systems and the simultaneous reduction of a necessary set of redexes performed by rewriting in weakly orthogonal, constructorbased rewrite systems. First, we define a sequential strategy similar in scope to other narrowing strategies used in modern lazy functional logic languages. Then, based on the sequential strategy, we define a parallel narrowing strategy that has several noteworthy characteristics: it is the first complete narrowing strategy which evaluates ground expressions in a fully deterministic, optimal way; it computes shortest derivations and minimal sets of solutions on inductively sequential rewrite systems; and when combined with term simplification, it subsumes and improves all r...
ContextSensitive Rewriting Strategies
, 1997
"... Contextsensitive rewriting is a simple restriction of rewriting which is formalized by imposing fixed restrictions on replacements. Such a restriction is given on a purely syntactic basis: it is (explicitly or automatically) specified on the arguments of symbols of the signature and inductively ..."
Abstract

Cited by 43 (30 self)
 Add to MetaCart
Contextsensitive rewriting is a simple restriction of rewriting which is formalized by imposing fixed restrictions on replacements. Such a restriction is given on a purely syntactic basis: it is (explicitly or automatically) specified on the arguments of symbols of the signature and inductively extended to arbitrary positions of terms built from those symbols. Termination is not only preserved but usually improved and several methods have been developed to formally prove it. In this paper, we investigate the definition, properties, and use of contextsensitive rewriting strategies, i.e., particular, fixed sequences of contextsensitive rewriting steps. We study how to define them in order to obtain efficient computations and to ensure that contextsensitive computations terminate whenever possible. We give conditions enabling the use of these strategies for rootnormalization, normalization, and infinitary normalization. We show that this theory is suitable for formalizing ...
Programming in Equational Logic: Beyond Strong Sequentiality
, 1993
"... Orthogonal term rewriting systems (also known as regular systems) provide an elegant framework for programming in equational logic. O'Donnell showed that the paralleloutermost strategy, which replaces all outermost redexes in each step, is complete for such systems. Many of the reductions performed ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
Orthogonal term rewriting systems (also known as regular systems) provide an elegant framework for programming in equational logic. O'Donnell showed that the paralleloutermost strategy, which replaces all outermost redexes in each step, is complete for such systems. Many of the reductions performed by this strategy could be wasteful in general. A lazy normalization algorithm that completely eliminated these wasteful reductions by reducing only "needed redexes" was later developed by Huet and Levy. However, this algorithm required the input programs to be restricted to the subclass of strongly sequential systems. This is because needed redexes do not exist for all orthogonal programs, and even when they do, they may not be computable. It is therefore quite natural to ask whether it is possible to devise a complete normalization algorithm for the entire class that minimizes (rather than eliminate) the wasteful reductions. In this paper we propose a solution to this problem using the concept of a necessary set of redexes. In such a set, at least one of the redexes must be reduced to normalize a term. We devise an algorithm to compute a necessary set for any term not in normal form and show that a strategy that repeatedly reduces all redexes in such a set is complete for orthogonal programs. We also show that our algorithm is "optimal" among all normalization algorithms that are based on lefthand sides alone. This means that our algorithm is lazy (like HuetLevy's) on strongly sequential parts of a program and "relaxes laziness minimally" to handle the other parts and thus does not sacrifice generality for the sake of efficiency.
On Hoare Logic and Kleene Algebra with Tests
"... We show that Kleene algebra with tests (KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational reasoning. In addition, we show that all relationally valid inference rules are derivable ..."
Abstract

Cited by 40 (13 self)
 Add to MetaCart
We show that Kleene algebra with tests (KAT) subsumes propositional Hoare logic (PHL). Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational reasoning. In addition, we show that all relationally valid inference rules are derivable in KAT and that deciding the relational validity of such rules is PSPACEcomplete.