Results 1  10
of
80
The Dimensions of Individual Strings and Sequences
 INFORMATION AND COMPUTATION
, 2003
"... A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary ..."
Abstract

Cited by 100 (11 self)
 Add to MetaCart
(Show Context)
A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0, 1]. Sequences that
Effective strong dimension in algorithmic information and computational complexity
 SIAM Journal on Computing
, 2004
"... The two most important notions of fractal dimension are Hausdorff dimension, developed by Hausdorff (1919), and packing dimension, developed independently by Tricot (1982) and Sullivan (1984). Both dimensions have the mathematical advantage of being defined from measures, and both have yielded exten ..."
Abstract

Cited by 76 (25 self)
 Add to MetaCart
(Show Context)
The two most important notions of fractal dimension are Hausdorff dimension, developed by Hausdorff (1919), and packing dimension, developed independently by Tricot (1982) and Sullivan (1984). Both dimensions have the mathematical advantage of being defined from measures, and both have yielded extensive applications in fractal geometry and dynamical systems. Lutz (2000) has recently proven a simple characterization of Hausdorff dimension in terms of gales, which are betting strategies that generalize martingales. Imposing various computability and complexity constraints on these gales produces a spectrum of effective versions of Hausdorff dimension, including constructive, computable, polynomialspace, polynomialtime, and finitestate dimensions. Work by several investigators has already used these effective dimensions to shed significant new light on a variety of topics in theoretical computer science. In this paper we show that packing dimension can also be characterized in terms of gales. Moreover, even though the usual definition of packing dimension is considerably more complex than that of Hausdorff dimension, our gale characterization of packing dimension is an exact dual
KolmogorovLoveland randomness and stochasticity
 Annals of Pure and Applied Logic
, 2005
"... An infinite binary sequence X is KolmogorovLoveland (or KL) random if there is no computable nonmonotonic betting strategy that succeeds on X in the sense of having an unbounded gain in the limit while betting successively on bits of X. A sequence X is KLstochastic if there is no computable nonm ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
An infinite binary sequence X is KolmogorovLoveland (or KL) random if there is no computable nonmonotonic betting strategy that succeeds on X in the sense of having an unbounded gain in the limit while betting successively on bits of X. A sequence X is KLstochastic if there is no computable nonmonotonic selection rule that selects from X an infinite, biased sequence. One of the major open problems in the field of effective randomness is whether MartinLöf randomness is the same as KLrandomness. Our first main result states that KLrandom sequences are close to MartinLöf random sequences in so far as every KLrandom sequence has arbitrarily dense subsequences that are MartinLöf random. A key lemma in the proof of this result is that for every effective split of a KLrandom sequence at least one of the halves is MartinLöf random. However, this splitting property does not characterize KLrandomness; we construct a sequence that is not even computably random such that every effective split yields two subsequences that are 2random. Furthermore, we show for any KLrandom sequence A that is computable in the halting problem that, first, for any effective split of A both halves are MartinLöf random and, second, for any computable, nondecreasing, and unbounded function g
Extracting Kolmogorov complexity with applications to dimension zeroone laws
 IN PROCEEDINGS OF THE 33RD INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES, AND PROGRAMMING
, 2006
"... We apply recent results on extracting randomness from independent sources to "extract " Kolmogorov complexity. For any ff; ffl? 0, given a string x with K(x) ? ffjxj, we show how to use a constant number of advice bits to efficiently compute another string y, jyj = \Omega (jxj), ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
(Show Context)
We apply recent results on extracting randomness from independent sources to &quot;extract &quot; Kolmogorov complexity. For any ff; ffl? 0, given a string x with K(x) ? ffjxj, we show how to use a constant number of advice bits to efficiently compute another string y, jyj = \Omega (jxj), with K(y) ? (1 \Gamma ffl)jyj. This result holds for both classical and spacebounded Kolmogorov complexity. We use the extraction procedure for spacebounded complexity to establish zeroone laws for polynomialspace strong dimension. Our results include: (i) If Dimpspace(E) ? 0, then Dimpspace(E=O(1)) = 1. (ii) Dim(E=O(1) j ESPACE) is either 0 or 1. (iii) Dim(E=poly j ESPACE) is either 0 or 1. In other words,
A lower cone in the wtt degrees of nonintegral effective dimension
 In Proceedings of IMS workshop on Computational Prospects of Infinity
, 2006
"... ABSTRACT. For any rational number r, we show that there exists a set A (weak truthtable reducible to the halting problem) such that any set B weak truthtable reducible to it has effective Hausdorff dimension at most r, where A itself has dimension at least r. This implies, for any rational r, the e ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
(Show Context)
ABSTRACT. For any rational number r, we show that there exists a set A (weak truthtable reducible to the halting problem) such that any set B weak truthtable reducible to it has effective Hausdorff dimension at most r, where A itself has dimension at least r. This implies, for any rational r, the existence of a wttlower cone of effective dimension r. 1.
Two sources are better than one for increasing the Kolmogorov complexity of infinite sequences
, 2007
"... ..."