Results 1  10
of
242
Logic Programming with Focusing Proofs in Linear Logic
 Journal of Logic and Computation
, 1992
"... The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation, free from implementation details which are, by nature, oriented and non symmetrical. I propose here one such model, in the area of Logic Programming, where the basic computational principle is C ..."
Abstract

Cited by 333 (8 self)
 Add to MetaCart
The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation, free from implementation details which are, by nature, oriented and non symmetrical. I propose here one such model, in the area of Logic Programming, where the basic computational principle is Computation = Proof search.
Categorial Type Logics
 Handbook of Logic and Language
, 1997
"... Contents 1 Introduction: grammatical reasoning 1 2 Linguistic inference: the Lambek systems 5 2.1 Modelinggrammaticalcomposition ............................ 5 2.2 Gentzen calculus, cut elimination and decidability . . . . . . . . . . . . . . . . . . . . 9 2.3 Discussion: options for resource mana ..."
Abstract

Cited by 239 (5 self)
 Add to MetaCart
Contents 1 Introduction: grammatical reasoning 1 2 Linguistic inference: the Lambek systems 5 2.1 Modelinggrammaticalcomposition ............................ 5 2.2 Gentzen calculus, cut elimination and decidability . . . . . . . . . . . . . . . . . . . . 9 2.3 Discussion: options for resource management . . . . . . . . . . . . . . . . . . . . . . 13 3 The syntaxsemantics interface: proofs and readings 16 3.1 Term assignment for categorial deductions . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Natural language interpretation: the deductive view . . . . . . . . . . . . . . . . . . . 21 4 Grammatical composition: multimodal systems 26 4.1 Mixedinference:themodesofcomposition........................ 26 4.2 Grammaticalcomposition:unaryoperations ....................... 30 4.2.1 Unary connectives: logic and structure . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2 Applications: imposing constraints, structural relaxation
Linear Objects: logical processes with builtin inheritance
, 1990
"... We present a new framework for amalgamating two successful programming paradigms: logic programming and objectoriented programming. From the former, we keep the declarative reading of programs. From the latter, we select two crucial notions: (i) the ability for objects to dynamically change their ..."
Abstract

Cited by 205 (6 self)
 Add to MetaCart
We present a new framework for amalgamating two successful programming paradigms: logic programming and objectoriented programming. From the former, we keep the declarative reading of programs. From the latter, we select two crucial notions: (i) the ability for objects to dynamically change their internal state during the computation; (ii) the structured representation of knowledge, generally obtained via inheritance graphs among classes of objects. We start with the approach, introduced in concurrent logic programming languages, which identifies objects with proof processes and object states with arguments occurring in the goals of a given process. This provides a clean, sideeffect free account of the dynamic behavior of objects in terms of the search tree  the only dynamic entity in logic programming languages. We integrate this view of objects with an extension of logic programming, which we call Linear Objects, based on the possibility of having multiple literals in the head of a program clause. This contains within itself the basis for a flexible form of inheritance, and maintains the constructive property of Prolog of returning definite answer substitutions as output of the proof of nonground goals. The theoretical background for Linear Objects is Linear Logic, a logic recently introduced to provide a theoretical basis for the study of concurrency. We also show that Linear Objects can be considered a constructive restriction of full Classical Logic. We illustrate the expressive power of Linear Objects compared to Prolog by several examples from the objectoriented domain, but we also show that it can be used to provide elegant solutions for problems arising in the standard style of logic programming.
The Logic of Bunched Implications
 BULLETIN OF SYMBOLIC LOGIC
, 1999
"... We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication; it can be viewed as a merging of intuition ..."
Abstract

Cited by 194 (38 self)
 Add to MetaCart
We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live sidebyside. The propositional version of BI arises from an analysis of the prooftheoretic relationship between conjunction and implication; it can be viewed as a merging of intuitionistic logic and multiplicative intuitionistic linear logic. The naturality of BI can be seen categorically: models of propositional BI's proofs are given by bicartesian doubly closed categories, i.e., categories which freely combine the semantics of propositional intuitionistic logic and propositional multiplicative intuitionistic linear logic. The predicate version of BI includes, in addition to standard additive quantifiers, multiplicative (or intensional) quantifiers # new and # new which arise from observing restrictions on structural rules on the level of terms as well as propositions. We discuss computational interpretations, based on sharing, at both the propositional and predic...
A Judgmental Reconstruction of Modal Logic
 Mathematical Structures in Computer Science
, 1999
"... this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for ..."
Abstract

Cited by 160 (38 self)
 Add to MetaCart
this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for intuitionistic modal logic which does not exhibit anomalies found in other proposals. We also give a new presentation of lax logic [FM97] and find that it is already contained in modal logic, using the decomposition of the lax modality fl A as
The πcalculus as a theory in linear logic: Preliminary results
 3rd Workshop on Extensions to Logic Programming, LNCS 660
, 1993
"... The agent expressions of the πcalculus can be translated into a theory of linear logic in such a way that the reflective and transitive closure of πcalculus (unlabeled) reduction is identified with “entailedby”. Under this translation, parallel composition is mapped to the multiplicative disjunct ..."
Abstract

Cited by 101 (17 self)
 Add to MetaCart
The agent expressions of the πcalculus can be translated into a theory of linear logic in such a way that the reflective and transitive closure of πcalculus (unlabeled) reduction is identified with “entailedby”. Under this translation, parallel composition is mapped to the multiplicative disjunct (“par”) and restriction is mapped to universal quantification. Prefixing, nondeterministic choice (+), replication (!), and the match guard are all represented using nonlogical constants, which are specified using a simple form of axiom, called here a process clause. These process clauses resemble Horn clauses except that they may have multiple conclusions; that is, their heads may be the par of atomic formulas. Such multiple conclusion clauses are used to axiomatize communications among agents. Given this translation, it is nature to ask to what extent proof theory can be used to understand the metatheory of the πcalculus. We present some preliminary results along this line for π0, the “propositional ” fragment of the πcalculus, which lacks restriction and value passing (π0 is a subset of CCS). Using ideas from prooftheory, we introduce coagents and show that they can specify some testing equivalences for π0. If negationasfailuretoprove is permitted as a coagent combinator, then testing equivalence based on coagents yields observational equivalence for π0. This latter result follows from observing that coagents directly represent formulas in the HennessyMilner modal logic. 1
Reasoning with higherorder abstract syntax in a logical framework
 ACM Transactions on Computational Logic
, 2002
"... Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natu ..."
Abstract

Cited by 90 (23 self)
 Add to MetaCart
Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that evaluation preserves types. One challenge in developing a framework for such reasoning is that higherorder abstract syntax (HOAS), an elegant and declarative treatment of objectlevel abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a metalogic that can be used to reason about judgments coded using HOAS; this metalogic is an extension of a simple intuitionistic logic that admits higherorder quantification over simply typed λterms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of definition is a prooftheoretic device that allows certain theories to be treated as “closed ” or as defining fixed points. We explore the difficulties of formal metatheoretic analysis of HOAS encodings by considering encodings of intuitionistic and linear logics, and formally derive the admissibility of cut for important subsets
A system of interaction and structure
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2004
"... This paper introduces a logical system, called BV, which extends multiplicative linear logic by a noncommutative selfdual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, call ..."
Abstract

Cited by 87 (15 self)
 Add to MetaCart
This paper introduces a logical system, called BV, which extends multiplicative linear logic by a noncommutative selfdual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae subject to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new topdown symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allowing the design of BV, yield a modular proof of cut elimination.
A MultipleConclusion MetaLogic
 In Proceedings of 9th Annual IEEE Symposium On Logic In Computer Science
, 1994
"... The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [12], provide data types, higherorder programming) but lack primitives for concurrency. The logic pro ..."
Abstract

Cited by 86 (7 self)
 Add to MetaCart
The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [12], provide data types, higherorder programming) but lack primitives for concurrency. The logic programming language, LO (Linear Objects) [2] provides for concurrency but lacks abstraction mechanisms. In this paper we present Forum, a logic programming presentation of all of linear logic that modularly extends the languages λProlog, Lolli, and LO. Forum, therefore, allows specifications to incorporate both abstractions and concurrency. As a metalanguage, Forum greatly extends the expressiveness of these other logic programming languages. To illustrate its expressive strength, we specify in Forum a sequent calculus proof system and the operational semantics of a functional programming language that incorporates such nonfunctional features as counters and references. 1