Results 1  10
of
27
Engineering and economic applications of complementarity problems
 SIAM Review
, 1997
"... Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions f ..."
Abstract

Cited by 127 (24 self)
 Add to MetaCart
Abstract. This paper gives an extensive documentation of applications of finitedimensional nonlinear complementarity problems in engineering and equilibrium modeling. For most applications, we describe the problem briefly, state the defining equations of the model, and give functional expressions for the complementarity formulations. The goal of this documentation is threefold: (i) to summarize the essential applications of the nonlinear complementarity problem known to date, (ii) to provide a basis for the continued research on the nonlinear complementarity problem, and (iii) to supply a broad collection of realistic complementarity problems for use in algorithmic experimentation and other studies.
Interfaces to PATH 3.0: Design, Implementation and Usage
 Computational Optimization and Applications
, 1998
"... Several new interfaces have recently been developed requiring PATH to solve a mixed complementarity problem. To overcome the necessity of maintaining a different version of PATH for each interface, the code was reorganized using objectoriented design techniques. At the same time, robustness issues ..."
Abstract

Cited by 48 (17 self)
 Add to MetaCart
Several new interfaces have recently been developed requiring PATH to solve a mixed complementarity problem. To overcome the necessity of maintaining a different version of PATH for each interface, the code was reorganized using objectoriented design techniques. At the same time, robustness issues were considered and enhancements made to the algorithm. In this paper, we document the external interfaces to the PATH code and describe some of the new utilities using PATH. We then discuss the enhancements made and compare the results obtained from PATH 2.9 to the new version. 1 Introduction The PATH solver [12] for mixed complementarity problems (MCPs) was introduced in 1995 and has since become the standard against which new MCP solvers are compared. However, the main user group for PATH continues to be economists using the MPSGE preprocessor [36]. While developing the new PATH implementation, we had two goals: to make the solver accessible to a broad audience and to improve the effecti...
Algorithms For Complementarity Problems And Generalized Equations
, 1995
"... Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult pr ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult problems are being proposed that exceed the capabilities of even the best algorithms currently available. There is, therefore, an immediate need to improve the capabilities of complementarity solvers. This thesis addresses this need in two significant ways. First, the thesis proposes and develops a proximal perturbation strategy that enhances the robustness of Newtonbased complementarity solvers. This strategy enables algorithms to reliably find solutions even for problems whose natural merit functions have strict local minima that are not solutions. Based upon this strategy, three new algorithms are proposed for solving nonlinear mixed complementarity problems that represent a significant improvement in robustness over previous algorithms. These algorithms have local Qquadratic convergence behavior, yet depend only on a pseudomonotonicity assumption to achieve global convergence from arbitrary starting points. Using the MCPLIB and GAMSLIB test libraries, we perform extensive computational tests that demonstrate the effectiveness of these algorithms on realistic problems. Second, the thesis extends some previously existing algorithms to solve more general problem classes. Specifically, the NE/SQP method of Pang & Gabriel (1993), the semismooth equations approach of De Luca, Facchinei & Kanz...
A Comparison of Large Scale Mixed Complementarity Problem Solvers
 Computational Optimization and Applications
, 1997
"... . This paper provides a means for comparing various computer codes for solving large scale mixed complementarity problems. We discuss inadequacies in how solvers are currently compared, and present a testing environment that addresses these inadequacies. This testing environment consists of a librar ..."
Abstract

Cited by 25 (13 self)
 Add to MetaCart
. This paper provides a means for comparing various computer codes for solving large scale mixed complementarity problems. We discuss inadequacies in how solvers are currently compared, and present a testing environment that addresses these inadequacies. This testing environment consists of a library of test problems, along with GAMS and MATLAB interfaces that allow these problems to be easily accessed. The environment is intended for use as a tool by other researchers to better understand both their algorithms and their implementations, and to direct research toward problem classes that are currently the most challenging. As an initial benchmark, eight different algorithm implementations for large scale mixed complementarity problems are briefly described and tested with default parameter settings using the new testing environment. Keywords: complementarity problems, variational inequalities, computation, algorithms 1. Introduction In recent years, a considerable number of new algori...
Complementarity Problems in GAMS and the PATH Solver
 Journal of Economic Dynamics and Control
, 1998
"... A fundamental mathematical problem is to find a solution to a square system of nonlinear equations. There are many methods to approach this problem, the most famous of which is Newton's method. In this paper, we describe a generalization of this problem, the complementarity problem. We show how such ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
A fundamental mathematical problem is to find a solution to a square system of nonlinear equations. There are many methods to approach this problem, the most famous of which is Newton's method. In this paper, we describe a generalization of this problem, the complementarity problem. We show how such problems are modeled within the GAMS modeling language and provide details about the PATH solver, a generalization of Newton's method, for finding a solution. While the modeling format is applicable in many disciplines, we draw the examples in this paper from an economic background. Finally, some extensions of the modeling format and the solver are described. Keywords: Complementarity problems, variational inequalities, algorithms AMS Classification: 90C33,65K10 This paper is an extended version of a talk presented at CEFES '98 (Computation in Economics, Finance and Engineering: Economic Systems) in Cambridge, England in July 1998 This material is based on research supported by Nationa...
NonMonotone TrustRegion Methods for BoundConstrained Semismooth Equations with Applications to Nonlinear Mixed Complementarity Problems
, 1999
"... We develop and analyze a class of trustregion methods for boundconstrained semismooth systems of equations. The algorithm is based on a simply constrained differentiable minimization reformulation. Our global convergence results are developed in a very general setting that allows for nonmonotoni ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
We develop and analyze a class of trustregion methods for boundconstrained semismooth systems of equations. The algorithm is based on a simply constrained differentiable minimization reformulation. Our global convergence results are developed in a very general setting that allows for nonmonotonicity of the function values at subsequent iterates. We propose a way of computing trial steps by a semismooth Newtonlike method that is augmented by a projection onto the feasible set. Under a DennisMoretype condition we prove that close to a BDregular solution the trustregion algorithm turns into this projected Newton method, which is shown to converge locally qsuperlinearly or quadratically, respectively, depending on the quality of the approximate BDsubdifferentials used. As an important application we discuss in detail how the developed algorithm can be used to solve nonlinear mixed complementarity problems (MCPs). Hereby, the MCP is converted into a boundconstrained semismooth...
Complementarity And Related Problems: A Survey
, 1998
"... This survey gives an introduction to some of the recent developments in the field of complementarity and related problems. After presenting two typical examples and the basic existence and uniqueness results, we focus on some new trends for solving nonlinear complementarity problems. Extensions to ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
This survey gives an introduction to some of the recent developments in the field of complementarity and related problems. After presenting two typical examples and the basic existence and uniqueness results, we focus on some new trends for solving nonlinear complementarity problems. Extensions to mixed complementarity problems, variational inequalities and mathematical programs with equilibrium constraints are also discussed.
Crash Techniques For LargeScale Complementarity Problems
 COMPLEMENTARITY AND VARIATIONAL PROBLEMS: STATE OF THE ART. SIAM
"... Most Newtonbased solvers for complementarity problems converge rapidly to a solution once they are close to the solution point and the correct active set has been found. We discuss the design and implementation of crash techniques that compute a good active set quickly based on projected gradient a ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
Most Newtonbased solvers for complementarity problems converge rapidly to a solution once they are close to the solution point and the correct active set has been found. We discuss the design and implementation of crash techniques that compute a good active set quickly based on projected gradient and projected Newton directions. Computational results obtained using these crash techniques with PATH and SMOOTH, stateoftheart complementarity solvers, are given, demonstrating in particular the value of the projected Newton technique in this context.
Strictly Feasible EquationBased Methods For Mixed Complementarity Problems
, 1999
"... We introduce a new algorithm for the solution of the mixed complementarity problem (MCP) which has stronger properties than most existing methods. In fact, typical solution methods for the MCP either generate feasible iterates but have to solve relatively complicated subproblems (like quadratic pro ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
We introduce a new algorithm for the solution of the mixed complementarity problem (MCP) which has stronger properties than most existing methods. In fact, typical solution methods for the MCP either generate feasible iterates but have to solve relatively complicated subproblems (like quadratic programs or linear complementarity problems), or they have relatively simple subproblems (like linear systems of equations) but generate not necessarily feasible iterates. The method to be presented here combines the nice features of these two classes of methods: It has to solve only one linear system of equations (of reduced dimension) at each iteration, and it generates feasible (more precisely: strictly feasible) iterates. The new method has some nice global and local convergence properties. Some preliminary numerical results will also be given.