Results 1 
7 of
7
Programming Metalogics with a Fixpoint Type
, 1992
"... A programming metalogic is a formal system into which programming languages can be translated and given meaning. The translation should both reflect the structure of the language and make it easy to prove properties of programs. This thesis develops certain metalogics using techniques of category th ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
A programming metalogic is a formal system into which programming languages can be translated and given meaning. The translation should both reflect the structure of the language and make it easy to prove properties of programs. This thesis develops certain metalogics using techniques of category theory and treats recursion in a new way. The notion of a category with fixpoint object is defined. Corresponding to this categorical structure there are type theoretic equational rules which will be present in all of the metalogics considered. These rules define the fixpoint type which will allow the interpretation of recursive declarations. With these core notions FIX categories are defined. These are the categorical equivalent of an equational logic which can be viewed as a very basic programming metalogic. Recursion is treated both syntactically and categorically. The expressive power of the equational logic is increased by embedding it in an intuitionistic predicate calculus, giving rise to the FIX logic. This contains propositions about the evaluation of computations to values and an induction principle which is derived from the definition of a fixpoint object as an initial algebra. The categorical structure which accompanies the FIX logic is defined, called a FIX hyperdoctrine, and certain existence and disjunction properties of FIX are stated. A particular FIX hyperdoctrine is constructed and used in the proof of the same properties. PCFstyle languages are translated into the FIX logic and computational adequacy reaulta are proved. Two languages are studied: Both are similar to PCF except one has call by value recursive function declararations and the other higher order conditionals. ...
Categories in Context: Historical, Foundational, and Philosophical †
"... The aim of this paper is to put into context the historical, foundational and philosophical significance of category theory. We use our historical investigation to inform the various categorytheoretic foundational debates and to point to some common elements found among those who advocate adopting ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The aim of this paper is to put into context the historical, foundational and philosophical significance of category theory. We use our historical investigation to inform the various categorytheoretic foundational debates and to point to some common elements found among those who advocate adopting a foundational stance. We then use these elements to argue for the philosophical position that category theory provides a framework for an algebraic in re interpretation of mathematical structuralism. In each context, what we aim to show is that, whatever the significance of category theory, it need not rely upon any settheoretic underpinning. 1. History Any (rational) reconstruction of a history, if it is not merely to consist in a list of dates and ‘facts’, requires a perspective. Noting this, the perspective taken in our detailing the history of category theory will be bounded by our investigation of category theorists ’ topdown approach towards analyzing mathematical concepts in a categorytheoretic context. Any perspective too has an agenda: ours is that, contrary to popular belief, whatever the
On Fixpoint Objects and Gluing Constructions
, 1997
"... This article 1 has two parts: In the first part, we present some general results about fixpoint objects. The minimal categorical structure required to model soundly the equational type theory which combines higher order recursion and computation types (introduced by [4]) is shown to be precisely a ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This article 1 has two parts: In the first part, we present some general results about fixpoint objects. The minimal categorical structure required to model soundly the equational type theory which combines higher order recursion and computation types (introduced by [4]) is shown to be precisely a letcategory possessing a fixpoint object. Functional completeness for such categories is developed. We also prove that categories with fixpoint operators do not necessarily have a fixpoint object. In the second part, we extend Freyd's gluing construction for cartesian closed categories to cartesian closed letcategories, and observe that this extension does not obviously apply to categories possessing fixpoint objects. We solve this problem by giving a new gluing construction for a limited class of categories with fixpoint objects; this is the main result of the paper. We use this categorytheoretic construction to prove a typetheoretic conservative extension result. A version of this pap...
Reflections on a categorical foundations of mathematics
, 2008
"... We examine Gödel’s completeness and incompleteness theorems for higher order arithmetic from a categorical point of view. The former says that a proposition is provable if and only if it is true in all models, which we take to be local toposes, i.e. Lawvere’s elementary toposes in which the terminal ..."
Abstract
 Add to MetaCart
We examine Gödel’s completeness and incompleteness theorems for higher order arithmetic from a categorical point of view. The former says that a proposition is provable if and only if it is true in all models, which we take to be local toposes, i.e. Lawvere’s elementary toposes in which the terminal object is a nontrivial indecomposable projective. The incompleteness theorem showed that, in the classical case, it is not enough to look only at those local toposes in which all the numerals are standard. Thus, for a classical mathematician, Hilbert’s formalist program is not compatible with the belief in a Platonic standard model. However, for pure intuitionistic type theory, a single model suffices, the linguistically constructed free topos, which is the initial object in the category of all elementary toposes and logical functors. Hence, for a moderate intuitionist, formalism and Platonism can be reconciled after all. The completeness theorem can be sharpened to represent any topos by continuous sections of a sheaf of local toposes.
THE UNIVERSITY OF CHICAGO LOGIC IN TOPOI: FUNCTORIAL SEMANTICS FOR HIGHERORDER LOGIC A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE HUMANITIES IN CANDIDACY FOR THE DEGREE OF
, 1997
"... ..."
(Show Context)
TYPES, SETS AND CATEGORIES
"... This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category t ..."
Abstract
 Add to MetaCart
This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, I have elected to offer detailed technical presentations of just a few important instances. 1 THE ORIGINS OF TYPE THEORY The roots of type theory lie in set theory, to be precise, in Bertrand Russell’s efforts to resolve the paradoxes besetting set theory at the end of the 19 th century. In analyzing these paradoxes Russell had come to find the set, or class, concept itself philosophically perplexing, and the theory of types can be seen as the outcome of his struggle to resolve these perplexities. But at first he seems to have regarded type theory as little more than a faute de mieux.