Results 1  10
of
83
OBBTree: A hierarchical structure for rapid interference detection
 Proc. ACM SIGGRAPH, 171–180
, 1996
"... {gottscha,lin,manocha}©cs. unc.edu We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of mode ..."
Abstract

Cited by 658 (43 self)
 Add to MetaCart
{gottscha,lin,manocha}©cs. unc.edu We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of models using tightfitting oriented bounding box trees. At runtime, the algorithm traverses the tree and tests for overlaps between oriented bounding boxes based on a new separating axis theorem, which takes less than 200 operations in practice. It has been implemented and we compare its performance with other hierarchical data structures. In particular, it can accurately detect all the contacts between large complex geometries composed of hundreds of thousands of polygons at interactive rates, almost one order of magnitude faster than earlier methods.
Collision detection and response for computer animation
 In Proc. of Intl. Conf. on Computer Graphics and Interactive Techniques
, 1988
"... When several objects are moved about by computer animarion, there is the chance that they will interpenetrate. This is often an undesired state, particularly if the animation is seeking to model a realistic world. Two issues are involved: detecting that a collision has occurred, and responding to it ..."
Abstract

Cited by 230 (2 self)
 Add to MetaCart
When several objects are moved about by computer animarion, there is the chance that they will interpenetrate. This is often an undesired state, particularly if the animation is seeking to model a realistic world. Two issues are involved: detecting that a collision has occurred, and responding to it. The former is fundamentally a kinematic problem, involving the positional relationship of objects in the world. The latter is a dynamic problem, in that it involves predicting behavior according to physical laws. This paper discusses collision detection and response in general, presents two collision detection algorithms, describes modeling collisions of arbitrary bodies using springs, and presents an analytical collision response algorithm for articulated rigid bodies that conserves linear and angular momentum.
Efficient collision detection using bounding volume hierarchies of kdops
 IEEE Transactions on Visualization and Computer Graphics
, 1998
"... Abstract—Collision detection is of paramount importance for many applications in computer graphics and visualization. Typically, the input to a collision detection algorithm is a large number of geometric objects comprising an environment, together with a set of objects moving within the environment ..."
Abstract

Cited by 228 (4 self)
 Add to MetaCart
Abstract—Collision detection is of paramount importance for many applications in computer graphics and visualization. Typically, the input to a collision detection algorithm is a large number of geometric objects comprising an environment, together with a set of objects moving within the environment. In addition to determining accurately the contacts that occur between pairs of objects, one needs also to do so at realtime rates. Applications such as haptic forcefeedback can require over 1,000 collision queries per second. In this paper, we develop and analyze a method, based on boundingvolume hierarchies, for efficient collision detection for objects moving within highly complex environments. Our choice of bounding volume is to use a “discrete orientation polytope” (“kdop”), a convex polytope whose facets are determined by halfspaces whose outward normals come from a small fixed set of k orientations. We compare a variety of methods for constructing hierarchies (“BVtrees”) of bounding kdops. Further, we propose algorithms for maintaining an effective BVtree of kdops for moving objects, as they rotate, and for performing fast collision detection using BVtrees of the moving objects and of the environment. Our algorithms have been implemented and tested. We provide experimental evidence showing that our approach yields substantially faster collision detection than previous methods. Index Terms—Collision detection, intersection searching, bounding volume hierarchies, discrete orientation polytopes, bounding boxes, virtual reality, virtual environments. 1
Collision Detection Between Geometric Models: A Survey
 In Proc. of IMA Conference on Mathematics of Surfaces
, 1998
"... In this paper, we survey the state of the art in collision detection between general geometric models. The set of models include polygonal objects, spline or algebraic surfaces, CSG models, and deformable bodies. We present a number of techniques and systems available for contact determination. We a ..."
Abstract

Cited by 184 (15 self)
 Add to MetaCart
In this paper, we survey the state of the art in collision detection between general geometric models. The set of models include polygonal objects, spline or algebraic surfaces, CSG models, and deformable bodies. We present a number of techniques and systems available for contact determination. We also describe several Nbody algorithms to reduce the number of pairwise intersection tests. 1 Introduction The goal of collision detection (also known as interference detection or contact determination) is to automatically report a geometric contact when it is about to occur or has actually occurred. The geometric models may be polygonal objects, splines, or algebraic surfaces. The problem is encountered in computeraided design and machining (CAD/CAM), robotics and automation, manufacturing, computer graphics, animation and computer simulated environments. Collision detection enables simulationbased design, tolerance verification, engineering analysis, assembly and disassembly, motion pla...
Approximating Polyhedra with Spheres for TimeCritical Collision Detection
 ACM Transactions on Graphics
, 1996
"... This paper presents a method for approximating polyhedral objects to support a timecritical collisiondetection algorithm. The approximations are hierarchies of spheres, and they allow the timecritical algorithm to progressively refine the accuracy of its detection, stopping as needed to maintain ..."
Abstract

Cited by 178 (1 self)
 Add to MetaCart
This paper presents a method for approximating polyhedral objects to support a timecritical collisiondetection algorithm. The approximations are hierarchies of spheres, and they allow the timecritical algorithm to progressively refine the accuracy of its detection, stopping as needed to maintain the realtime performance essential for interactive applications. The key to this approach is a preprocess that automatically builds tightly fitting hierarchies for rigid and articulated objects. The preprocess uses medialaxis surfaces, which are skeletal representations of objects. These skeletons guide an optimization technique that gives the hierarchies accuracy properties appropriate for collision detection. In a sample application, hierarchies built this way allow the timecritical collisiondetection algorithm to have acceptable accuracy, improving significantly on that possible with hierarchies built by previous techniques. The performance of the timecritical algorithm in this appli...
Collision Detection for Interactive Graphics Applications
 IEEE Transactions on Visualization and Computer Graphics
, 1995
"... Solid objects in the real world do not pass through each other when they collide. Enforcing this property of "solidness" is important in many interactive graphics applications; for example, solidness makes virtual reality more believable, and solidness is essential for the correctness of vehicle sim ..."
Abstract

Cited by 173 (5 self)
 Add to MetaCart
Solid objects in the real world do not pass through each other when they collide. Enforcing this property of "solidness" is important in many interactive graphics applications; for example, solidness makes virtual reality more believable, and solidness is essential for the correctness of vehicle simulators. These applications use a collisiondetection algorithm to enforce the solidness of objects. Unfortunately, previous collisiondetection algorithms do not adequately address the needs of interactive applications. To work in these applications, a collisiondetection algorithm must run at realtime rates, even when many objects can collide, and it must tolerate objects whose motion is specified "on the fly" by a user. This dissertation describes a new collisiondetection algorithm that meets these criteria through approximation and graceful degradation, elements of timecritical computing. The algorithm is not only fast but also interruptible, allowing an application to trade accuracy ...
On multiple moving objects
 Algorithmica
, 1987
"... This paper explores the motion planning problem for multiple mov ing objects. The approach taken consists of assigning priorities to the objects, then planning motions one object at a time. For each moving object, the planner constructs a configuration spacetime that represents the timevarying co ..."
Abstract

Cited by 171 (0 self)
 Add to MetaCart
This paper explores the motion planning problem for multiple mov ing objects. The approach taken consists of assigning priorities to the objects, then planning motions one object at a time. For each moving object, the planner constructs a configuration spacetime that represents the timevarying constraints im posed on the moving object by the other moving and stationary objects. The planner represents this spacetime approximately, using twodimensional slices. The spacetime is then searched for a collisionfree path. The paper demonstrates this approach in two domains. One domain consists of translating planar objects; the other domain consists of twolink planar articulated arms.
A Fast Algorithm for Incremental Distance Calculation
 In IEEE International Conference on Robotics and Automation
, 1991
"... A simple and efficient algorithm for finding the closest points between two convex polyhedra is described here. Data from numerous experiments tested on a broad set of convex polyhedra on ! 3 show that the running time is roughly constant for finding closest points when nearest points are approxim ..."
Abstract

Cited by 154 (4 self)
 Add to MetaCart
A simple and efficient algorithm for finding the closest points between two convex polyhedra is described here. Data from numerous experiments tested on a broad set of convex polyhedra on ! 3 show that the running time is roughly constant for finding closest points when nearest points are approximately known and is linear in total number of vertices if no special initialization is done. This algorithm can be used for collision detection, computation of the distance between two polyhedra in threedimensional space, and other robotics problems. It forms the heart of the motion planning algorithm of [1]. 1 Introduction In this paper we present a simple method for finding and tracking the closest points on a pair of convex polyhedra. The method is generally applicable, but is especially well suited to repetitive distance calculation as the objects move in a sequence of small, discrete steps. The method works by finding and maintaining the pair of closest features (vertex, edge, or face)...
Curved Surfaces and Coherence for Nonpenetrating Rigid Body Simulation
, 1990
"... A formulation for the contact forces between curved surfaces in resting (noncolliding) contact is presented. In contrast to previous formulations, constraints on the allowable tangential movement between contacting surfaces are not required. Surfaces are restricted to be twicedifferentiable surfac ..."
Abstract

Cited by 136 (6 self)
 Add to MetaCart
A formulation for the contact forces between curved surfaces in resting (noncolliding) contact is presented. In contrast to previous formulations, constraints on the allowable tangential movement between contacting surfaces are not required. Surfaces are restricted to be twicedifferentiable surfaces without boundary. Only finitely many contact points between surfaces are allowed; however, the surfaces need not be convex. The formulation yields the contact forces between curved surfaces and polyhedra as well. Algorithms for performing collision detection during simulation on bodies composed of both polyhedra and strictly convex curved surfaces are also presented. The collision detection algorithms exploit the geometric coherence between successive time steps of the simulation to achieve efficient running times.