Results 1  10
of
90
Constraint Query Languages
, 1992
"... We investigate the relationship between programming with constraints and database query languages. We show that efficient, declarative database programming can be combined with efficient constraint solving. The key intuition is that the generalization of a ground fact, or tuple, is a conjunction ..."
Abstract

Cited by 372 (43 self)
 Add to MetaCart
(Show Context)
We investigate the relationship between programming with constraints and database query languages. We show that efficient, declarative database programming can be combined with efficient constraint solving. The key intuition is that the generalization of a ground fact, or tuple, is a conjunction of constraints over a small number of variables. We describe the basic Constraint Query Language design principles and illustrate them with four classes of constraints: real polynomial inequalities, dense linear order inequalities, equalities over an infinite domain, and boolean equalities. For the analysis, we use quantifier elimination techniques from logic and the concept of data complexity from database theory. This framework is applicable to managing spatial data and can be combined with existing multidimensional searching algorithms and data structures.
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 366 (57 self)
 Add to MetaCart
(Show Context)
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Logic and the Challenge of Computer Science
, 1988
"... Nowadays computer science is surpassing mathematics as the primary field of logic applications, but logic is not tuned properly to the new role. In particular, classical logic is preoccupied mostly with infinite static structures whereas many objects of interest in computer science are dynamic objec ..."
Abstract

Cited by 166 (16 self)
 Add to MetaCart
Nowadays computer science is surpassing mathematics as the primary field of logic applications, but logic is not tuned properly to the new role. In particular, classical logic is preoccupied mostly with infinite static structures whereas many objects of interest in computer science are dynamic objects with bounded resources. This chapter consists of two independent parts. The first part is devoted to finite model theory; it is mostly a survey of logics tailored for computational complexity. The second part is devoted to dynamic structures with bounded resources. In particular, we use dynamic structures with bounded resources to model Pascal.
Extending Classical Logic with Inductive Definitions
, 2000
"... The goal of this paper is to extend classical logic with a generalized notion of inductive definition supporting positive and negative induction, to investigate the properties of this logic, its relationships to other logics in the area of nonmonotonic reasoning, logic programming and deductiv ..."
Abstract

Cited by 69 (46 self)
 Add to MetaCart
(Show Context)
The goal of this paper is to extend classical logic with a generalized notion of inductive definition supporting positive and negative induction, to investigate the properties of this logic, its relationships to other logics in the area of nonmonotonic reasoning, logic programming and deductive databases, and to show its application for knowledge representation by giving a typology of definitional knowledge.
Constraint Programming and Database Query Languages
 In Proc. 2nd Conference on Theoretical Aspects of Computer Software (TACS
, 1994
"... . The declarative programming paradigms used in constraint languages can lead to powerful extensions of Codd's relational data model. The development of constraint database query languages from logical database query languages has many similarities with the development of constraint logic progr ..."
Abstract

Cited by 62 (3 self)
 Add to MetaCart
(Show Context)
. The declarative programming paradigms used in constraint languages can lead to powerful extensions of Codd's relational data model. The development of constraint database query languages from logical database query languages has many similarities with the development of constraint logic programming from logic programming, but with the additional requirements of data efficient, setatatime, and bottomup evaluation. In this overview of constraint query languages (CQLs) we first present the framework of [41]. The principal idea is that: "the ktuple (or record) data type can be generalized by a conjunction of quantifierfree constraints over k variables". The generalization must preserve various language properties of the relational data model, e.g., the calculus/algebra equivalence, and have time complexity polynomial in the size of the data. We next present an algebra for dense order constraints that is simpler to evaluate than the calculus described in [41], and we sharpen some of...
Infinitary Logic and Inductive Definability over Finite Structures
 Information and Computation
, 1995
"... The extensions of firstorder logic with a least fixed point operator (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [Abi ..."
Abstract

Cited by 58 (7 self)
 Add to MetaCart
The extensions of firstorder logic with a least fixed point operator (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [Abiteboul and Vianu, 1991b] investigated the relationship of these two logics in the absence of an ordering, using a machine model of generic computation. In particular, they showed that the two languages have equivalent expressive power if and only if P = PSPACE. These languages can also be seen as fragments of an infinitary logic where each formula has a bounded number of variables, L ! 1! (see, for instance, [Kolaitis and Vardi, 1990]). We investigate this logic of finite structures and provide a normal form for it. We also present a treatment of the results in [Abiteboul and Vianu, 1991b] from this point of view. In particular, we show that we can write a formula of FO + LFP that defines ...
Towards Tractable Algebras for Bags
, 1993
"... Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in ..."
Abstract

Cited by 56 (5 self)
 Add to MetaCart
Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in the language extends its expressive power, and increases its complexity. We consider two main issues, namely (i) the impact of the depth of bag nesting on the expressive power, and (ii) the complexity and the expressive power induced by the algebraic operations. We show that the bag algebra is more expressive than the nested relation algebra (at all levels of nesting), and that the difference may be subtle. We establish a hierarchy based on the structure of algebra expressions. This hierarchy is shown to be highly related to the properties of the powerset operator. Invited to a special issue of the Journal of Computer and System Sciences selected from ACM Princ. of Database Systems,...
Computing With FirstOrder Logic
, 1995
"... We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtaine ..."
Abstract

Cited by 55 (13 self)
 Add to MetaCart
(Show Context)
We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtained using a powerful normal form for while which shows that each while computation over an unordered domain can be reduced to a while computation over an ordered domain via a fixpoint query. The fixpoint query computes an equivalence relation on tuples which is a congruence with respect to the rest of the computation. The same technique is used to show that equivalence of tuples and structures with respect to FO formulas with bounded number of variables is definable in fixpoint. Generalizing fixpoint and while, we consider more powerful languages which model arbitrary computation interacting with a database using a finite set of FO queries. Such computation is modeled by a relational machine...
A logic of nonmonotone inductive definitions
 ACM transactions on computational logic
, 2007
"... Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated i ..."
Abstract

Cited by 54 (35 self)
 Add to MetaCart
(Show Context)
Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inflationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive Definitions (IDlogic). The semantics of the logic is strongly influenced by the wellfounded semantics of logic programming. This paper discusses the formalisation of different forms of (non)monotone induction by the wellfounded semantics and illustrates the use of the logic for formalizing mathematical and commonsense knowledge. To model different types of induction found in mathematics, we define several subclasses of definitions, and show that they are correctly formalized by the wellfounded semantics. We also present translations into classical first or second order logic. We develop modularity and totality results and demonstrate their use to analyze and simplify complex definitions. We illustrate the use of the logic for temporal reasoning. The logic formally extends Logic Programming, Abductive Logic Programming and Datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. Categories and Subject Descriptors:... [...]:... 1.
Logic programming revisited: logic programs as inductive definitions
 ACM Transactions on Computational Logic
, 2001
"... Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to ..."
Abstract

Cited by 51 (28 self)
 Add to MetaCart
(Show Context)
Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to identify a unique canonical, preferred or intended model among the models of the program and to appeal to common sense to validate the choice of such model. Another line of research developed the view of logic programming as a nonmonotonic reasoning formalism strongly related to Default Logic and Autoepistemic Logic. These competing approaches have resulted in some confusion about the declarative meaning of logic programming. This paper investigates the problem and proposes an alternative epistemological foundation for the canonical model approach, which is not based on common sense but on a solid mathematical information principle. The thesis is developed that logic programming can be understood as a natural and general logic of inductive definitions. In particular, logic programs with negation represent nonmonotone inductive definitions. It is argued that this thesis results in an alternative justification of the wellfounded model as the unique intended model of the logic program. In addition, it equips logic programs with an easy to comprehend meaning