Results 1  10
of
477
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 548 (74 self)
 Add to MetaCart
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over the last ten years and to take a critical view of these developments from several perspectives: logical, epistemological, computational and suitability to application. The paper attempts to expose some of the challenges and prospects for the further development of the field.
Algorithms for Constraint Satisfaction Problems: A Survey
 AI MAGAZINE
, 1992
"... A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic ..."
Abstract

Cited by 399 (0 self)
 Add to MetaCart
A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This paper presents a brief overview of many of these approaches in a tutorial fashion.
Extending and Implementing the Stable Model Semantics
, 2002
"... A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities ..."
Abstract

Cited by 322 (6 self)
 Add to MetaCart
(Show Context)
A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities. A declarative semantics is developed which extends the stable model semantics of normal programs. The computational complexity of the language is shown to be similar to that of normal programs under the stable model semantics. A simple embedding of general weight constraint rules to a small subclass of the language called basic constraint rules is devised. An implementation of the language, the smodels system, is developed based on this embedding. It uses a two level architecture consisting of a frontend and a kernel language implementation. The frontend allows restricted use of variables and functions and compiles general weight constraint rules to basic constraint rules. A major part of the work is the development of an ecient search procedure for computing stable models for this kernel language. The procedure is compared with and empirically tested against satis ability checkers and an implementation of the stable model semantics. It offers a competitive implementation of the stable model semantics for normal programs and attractive performance for problems where the new types of rules provide a compact representation.
Probabilistic Horn abduction and Bayesian networks
 Artificial Intelligence
, 1993
"... This paper presents a simple framework for Hornclause abduction, with probabilities associated with hypotheses. The framework incorporates assumptions about the rule base and independence assumptions amongst hypotheses. It is shown how any probabilistic knowledge representable in a discrete Bayesia ..."
Abstract

Cited by 305 (38 self)
 Add to MetaCart
(Show Context)
This paper presents a simple framework for Hornclause abduction, with probabilities associated with hypotheses. The framework incorporates assumptions about the rule base and independence assumptions amongst hypotheses. It is shown how any probabilistic knowledge representable in a discrete Bayesian belief network can be represented in this framework. The main contribution is in finding a relationship between logical and probabilistic notions of evidential reasoning. This provides a useful representation language in its own right, providing a compromise between heuristic and epistemic adequacy. It also shows how Bayesian networks can be extended beyond a propositional language. This paper also shows how a language with only (unconditionally) independent hypotheses can represent any probabilistic knowledge, and argues that it is better to invent new hypotheses to explain dependence rather than having to worry about dependence in the language. Scholar, Canadian Institute for Advanced...
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 168 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Explanation and Prediction: An Architecture for Default and Abductive Reasoning
 Computational Intelligence
, 1993
"... Although there are many arguments that logic is an appropriate tool for artificial intelligence, there has been a perceived problem with the monotonicity of classical logic. This paper elaborates on the idea that reasoning should be viewed as theory formation where logic tells us the consequences of ..."
Abstract

Cited by 133 (16 self)
 Add to MetaCart
Although there are many arguments that logic is an appropriate tool for artificial intelligence, there has been a perceived problem with the monotonicity of classical logic. This paper elaborates on the idea that reasoning should be viewed as theory formation where logic tells us the consequences of our assumptions. The two activities of predicting what is expected to be true and explaining observations are considered in a simple theory formation framework. Properties of each activity are discussed, along with a number of proposals as to what should be predicted or accepted as reasonable explanations. An architecture is proposed to combine explanation and prediction into one coherent framework. Algorithms used to implement the system as well as examples from a running implementation are given. Key words: defaults, conjectures, explanation, prediction, abduction, dialectics, logic, nonmonotonicity, theory formation Explanation and Prediction 2 1 Introduction One way to do research i...
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 131 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
A Model for Belief Revision
, 1988
"... It is generally recognized that the possibdity of detecting contradictions and identifying their sources is an important feature of an intelligent system. Systems that are able to detect contradictions, identify their causes, or readjust their knowledge bases to remove the contradiction, called Beli ..."
Abstract

Cited by 121 (30 self)
 Add to MetaCart
It is generally recognized that the possibdity of detecting contradictions and identifying their sources is an important feature of an intelligent system. Systems that are able to detect contradictions, identify their causes, or readjust their knowledge bases to remove the contradiction, called Belief Revision Systems. Truth Maintenance Systems, or Reason Maintenance Systems. have been studied by several researchers in Artificial bttelligence ( AI). In this paper, we present a logic suitable for supporting belief revision systems, discuss the properties that a belief revision system based on this logic will exhibit, and present a particular intplementation of our model of a belief revision system. The system we present differs from most of the systems developed so far in three respects: First, it is baseti on a logic that was developed to support belief revision systems. Second, it uses the rules of inference of the logic to automatically compute the dependencies among propositions rather than having to force the user to do titis, as in many existing systems. Third, it was the first belief revision system whose implementation relies on the manipulation of sets of assumptions, not justifications.
Truth Maintenance
, 1990
"... General purpose truth maintenance systems have received considerable attention in the past few years. This paper discusses the functionality of truth maintenance systems and compares various existing algorithms. Applications and directions for future research are also discussed. Introduction In 197 ..."
Abstract

Cited by 119 (3 self)
 Add to MetaCart
General purpose truth maintenance systems have received considerable attention in the past few years. This paper discusses the functionality of truth maintenance systems and compares various existing algorithms. Applications and directions for future research are also discussed. Introduction In 1978 Jon Doyle wrote a masters thesis at the MIT AI Laboratory entitled "Truth Maintenance Systems for Problem Solving" [ Doyle, 1979 ] . In this thesis Doyle described an independent module called a truth maintenance system, or TMS, which maintained beliefs for general problem solving systems. In the twelve years since the appearance of Doyle's TMS a large body of literature has accumulated on truth maintenance. The seminal idea appears not to have been any particular technical mechanism but rather the general concept of an independent module for truth (or belief) maintenance. All truth maintenance systems manipulate proposition symbols and relationships between proposition symbols. I will use...