Results 1 
4 of
4
An algorithm for deciding BAPA: Boolean Algebra with Presburger Arithmetic
 In 20th International Conference on Automated Deduction, CADE20
, 2005
"... Abstract. We describe an algorithm for deciding the firstorder multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of a priory u ..."
Abstract

Cited by 26 (13 self)
 Add to MetaCart
Abstract. We describe an algorithm for deciding the firstorder multisorted theory BAPA, which combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger arithmetic operations (PA). BAPA can express the relationship between integer variables and cardinalities of a priory unbounded finite sets, and supports arbitrary quantification over sets and integers. Our motivation for BAPA is deciding verification conditions that arise in the static analysis of data structure consistency properties. Data structures often use an integer variable to keep track of the number of elements they store; an invariant of such a data structure is that the value of the integer variable is equal to the number of elements stored in the data structure. When the data structure content is represented by a set, the resulting constraints can be captured in BAPA. BAPA formulas with quantifier alternations arise when verifying programs with annotations containing quantifiers, or when proving simulation relation conditions for refinement and equivalence of program fragments. Furthermore, BAPA constraints can be used for proving the termination of programs that manipulate data structures, and have applications in constraint databases. We give a formal description of a decision procedure for BAPA, which implies the decidability of BAPA. We analyze our algorithm and obtain an elementary upper bound on the running time, thereby giving the first complexity bound for BAPA. Because it works by a reduction to PA, our algorithm yields the decidability of a combination of sets of uninterpreted elements with any decidable extension of PA. Our algorithm can also be used to yield an optimal decision procedure for BA through a reduction to PA with bounded quantifiers. We have implemented our algorithm and used it to discharge verification conditions in the Jahob system for data structure consistency checking of Java programs; our experience with the algorithm is promising. 1
Verifying and reflecting quantifier elimination for Presburger arithmetic
 LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING
, 2005
"... We present an implementation and verification in higherorder logic of Cooperâ€™s quantifier elimination for Presburger arithmetic. Reflection, i.e. the direct execution in ML, yields a speedup of a factor of 200 over an LCFstyle implementation and performs as well as a decision procedure handcode ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
We present an implementation and verification in higherorder logic of Cooperâ€™s quantifier elimination for Presburger arithmetic. Reflection, i.e. the direct execution in ML, yields a speedup of a factor of 200 over an LCFstyle implementation and performs as well as a decision procedure handcoded in ML.
Asserting bytecode safety
 PROCEEDINGS OF THE 15TH EUROPEAN SYMPOSIUM ON PROGRAMMING (ESOP05
, 2005
"... We instantiate an Isabelle/HOL framework for proof carrying code to Jinja bytecode, a downsized variant of Java bytecode featuring objects, inheritance, method calls and exceptions. Bytecode annotated in a first order expression language can be certified not to produce arithmetic overflows. For thi ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
We instantiate an Isabelle/HOL framework for proof carrying code to Jinja bytecode, a downsized variant of Java bytecode featuring objects, inheritance, method calls and exceptions. Bytecode annotated in a first order expression language can be certified not to produce arithmetic overflows. For this purpose we use a generic verification condition generator, which we have proven correct and relatively complete.
Verifying mixed realinteger quantifier elimination
 IJCAR 2006, LNCS 4130
, 2006
"... We present a formally verified quantifier elimination procedure for the first order theory over linear mixed realinteger arithmetics in higherorder logic based on a work by Weispfenning. To this end we provide two verified quantifier elimination procedures: for Presburger arithmitics and for lin ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
We present a formally verified quantifier elimination procedure for the first order theory over linear mixed realinteger arithmetics in higherorder logic based on a work by Weispfenning. To this end we provide two verified quantifier elimination procedures: for Presburger arithmitics and for linear real arithmetics.