Results 1  10
of
82
Optical Models for Direct Volume Rendering
, 1995
"... This tutorial survey paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, and/or scattering material. They are, in order of increasing realism, absorption only, emission only, emission and absorption combined, single scattering of exte ..."
Abstract

Cited by 242 (6 self)
 Add to MetaCart
This tutorial survey paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, and/or scattering material. They are, in order of increasing realism, absorption only, emission only, emission and absorption combined, single scattering of external illumination without shadows, single scattering with shadows, and multiple scattering. For each model I give the physical assumptions, describe the applications for which it is appropriate, derive the differential or integral equations for light transport, present calculations methods for solving them, and show output images for a data set representing a cloud. Special attention is given to calculation methods for the multiple scattering model.
Global Illumination using Photon Maps
, 1996
"... This paper presents a two pass global illumination method based on the concept of photon maps. It represents a significant improvement of a previously described approach both with respect to speed, accuracy and versatility. In the first pass two photon maps are created by emitting packets of energy ..."
Abstract

Cited by 215 (9 self)
 Add to MetaCart
This paper presents a two pass global illumination method based on the concept of photon maps. It represents a significant improvement of a previously described approach both with respect to speed, accuracy and versatility. In the first pass two photon maps are created by emitting packets of energy (photons) from the light sources and storing these as they hit surfaces within the scene. We use one high resolution caustics photon map to render caustics that are visualized directly and one low resolution photon map that is used during the rendering step. The scene is rendered using a distribution ray tracing algorithm optimized by using the information in the photon maps. Shadow photons are used to render shadows more efficiently and the directional information in the photon map is used to generate optimized sampling directions and to limit the recursion in the distribution ray tracer by providing an estimate of the radiance on all surfaces with the exception of specular...
Instant Radiosity
, 1997
"... We present a fundamental procedure for instant rendering from the radiance equation. Operating directly on the textured scene description, the very efficient and simple algorithm produces photorealistic images without any finite element kernel or solution discretization of the underlying integral eq ..."
Abstract

Cited by 180 (3 self)
 Add to MetaCart
We present a fundamental procedure for instant rendering from the radiance equation. Operating directly on the textured scene description, the very efficient and simple algorithm produces photorealistic images without any finite element kernel or solution discretization of the underlying integral equation. Rendering rates of a few seconds are obtained by exploiting graphics hardware, the deterministic technique of the quasirandom walk for the solution of the global illumination problem, and the new method of jittered low discrepancy sampling.
Optimally Combining Sampling Techniques for Monte Carlo Rendering
, 1995
"... Monte Carlo integration is a powerful technique for the evaluation of difficult integrals. Applications in rendering include distribution ray tracing, Monte Carlo path tracing, and formfactor computation for radiosity methods. In these cases variance can often be significantly reduced by drawing sa ..."
Abstract

Cited by 136 (2 self)
 Add to MetaCart
Monte Carlo integration is a powerful technique for the evaluation of difficult integrals. Applications in rendering include distribution ray tracing, Monte Carlo path tracing, and formfactor computation for radiosity methods. In these cases variance can often be significantly reduced by drawing samples from several distributions, each designed to sample well some difficult aspect of the integrand. Normally this is done by explicitly partitioning the integration domain into regions that are sampled differently. We present a powerful alternative for constructing robust Monte Carlo estimators, by combining samples from several distributions in a way that is provably good. These estimators are unbiased, and can reduce variance significantly at little additional cost. We present experiments and measurements from several areas in rendering: calculation of glossy highlights from area light sources, the “final gather” pass of some radiosity algorithms, and direct solution of the rendering equation using bidirectional path tracing.
A Clustering Algorithm for Radiosity in Complex Environments
, 1994
"... 1 Introduction Recent trends in realistic image synthesis have been towards a separation of the rendering process into two or more stages[10, 2, 9]. One of these stages solves for the global energy equilibrium throughoutthe environment. This process can be very expensive and its complexity grows ra ..."
Abstract

Cited by 130 (5 self)
 Add to MetaCart
1 Introduction Recent trends in realistic image synthesis have been towards a separation of the rendering process into two or more stages[10, 2, 9]. One of these stages solves for the global energy equilibrium throughoutthe environment. This process can be very expensive and its complexity grows rapidly with the number of objects in the environment.These computational demands generally limit the level of detail of environments that can be simulated. Furthermore, a solution to thisproblem must be computed before anything useful can be displayed.
BiDirectional Path Tracing
 PROCEEDINGS OF THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL GRAPHICS AND VISUALIZATION TECHNIQUES (COMPUGRAPHICS ’93
, 1993
"... In this paper we present a new Monte Carlo rendering algorithm that seamlessly integrates the ideas of ..."
Abstract

Cited by 125 (10 self)
 Add to MetaCart
In this paper we present a new Monte Carlo rendering algorithm that seamlessly integrates the ideas of
Interactive Global Illumination using Fast Ray Tracing
, 2002
"... Rasterization hardware provides interactive frame rates for rendering dynamic scenes, but lacks the ability of ray tracing required for efficient global illumination simulation. Existing ray tracing based methods yield high quality renderings but are far too slow for interactive use. We present a ..."
Abstract

Cited by 110 (19 self)
 Add to MetaCart
Rasterization hardware provides interactive frame rates for rendering dynamic scenes, but lacks the ability of ray tracing required for efficient global illumination simulation. Existing ray tracing based methods yield high quality renderings but are far too slow for interactive use. We present a new parallel global illumination algorithm that perfectly scales, has minimal preprocessing and communication overhead, applies highly efficient sampling techniques based on randomized quasiMonte Carlo integration, and benefits from a fast parallel ray tracing implementation by shooting coherent groups of rays. Thus a performance is achieved that allows for applying arbitrary changes to the scene, while simulating global illumination including shadows from area light sources, indirect illumination, specular effects, and caustics at interactive frame rates. Ceasing interaction rapidly provides high quality renderings.
Combining Hierarchical Radiosity and Discontinuity Meshing
, 1993
"... We introduce a new approach for the computation of viewindependent solutions to the diffuse global illumination problem in polyhedral environments. The approach combines ideas from hierarchical radiosity and discontinuity meshing to yield solutions that are accurate both numerically and visually. Fi ..."
Abstract

Cited by 107 (9 self)
 Add to MetaCart
We introduce a new approach for the computation of viewindependent solutions to the diffuse global illumination problem in polyhedral environments. The approach combines ideas from hierarchical radiosity and discontinuity meshing to yield solutions that are accurate both numerically and visually. First, we describe a modified hierarchical radiosity algorithm that uses a discontinuitydriven subdivision strategy to achieve better numerical accuracy and faster convergence. Second, we present a new algorithm based on discontinuity meshing that uses the hierarchical solution to reconstruct an objectspace approximation to the radiance function that is visually accurate. Our results show significant improvements over both hierarchical radiosity and discontinuity meshing algorithms.
Interactive Rendering using the Render Cache
"... Interactive rendering requires rapid visual feedback. The render cache is a new method for achieving this when using highquality pixeloriented renderers such as ray tracing that are usually considered too slow for interactive use. The render cache provides visual feedback at a rate faster than ..."
Abstract

Cited by 91 (6 self)
 Add to MetaCart
Interactive rendering requires rapid visual feedback. The render cache is a new method for achieving this when using highquality pixeloriented renderers such as ray tracing that are usually considered too slow for interactive use. The render cache provides visual feedback at a rate faster than the renderer can generate complete frames, at the cost of producing approximate images during camera and object motion. The method works both by caching previous results and reprojecting them to estimate the current image and by directing the renderer's sampling to more rapidly improve subsequent images. Our
Monte Carlo Techniques for Direct Lighting Calculations
 ACM Transactions on Graphics
, 1996
"... In a distribution ray tracer, the crucial part of the direct lighting calculation is the sampling strategy for shadow ray testing. Monte Carlo integration with importance sampling is used to carry out this calculation. Importance sampling involves the design of integrandspecific probability density ..."
Abstract

Cited by 86 (8 self)
 Add to MetaCart
In a distribution ray tracer, the crucial part of the direct lighting calculation is the sampling strategy for shadow ray testing. Monte Carlo integration with importance sampling is used to carry out this calculation. Importance sampling involves the design of integrandspecific probability density functions which are used to generate sample points for the numerical quadrature. Probability density functions are presented that aid in the direct lighting calculation from luminaires of various simple shapes. A method for defining a probability density function over a set of luminaires is presented that allows the direct lighting calculation to be carried out with one sample, regardless of the number of luminaires. CR Categories and Subject Descriptors: G.1.4 [Mathematical Computing]: Quadrature and Numerical Differentiation; I.3.0 [Computer Graphics]: General; I.3.7 [Computer Graphics]: ThreeDimensional Graphics and Realism. Additional Key Words and Phrases: direct lighting, importanc...