Results 1  10
of
55
Structured variable selection with sparsityinducing norms
, 2011
"... We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsityinducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual ℓ1norm and the group ℓ1norm by allowing the subsets to ov ..."
Abstract

Cited by 193 (31 self)
 Add to MetaCart
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsityinducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual ℓ1norm and the group ℓ1norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problems. We first explore the relationship between the groups defining the norm and the resulting nonzero patterns, providing both forward and backward algorithms to go back and forth from groups to patterns. This allows the design of norms adapted to specific prior knowledge expressed in terms of nonzero patterns. We also present an efficient active set algorithm, and analyze the consistency of variable selection for leastsquares linear regression in low and highdimensional settings.
Sparse Permutation Invariant Covariance Estimation
 Electronic Journal of Statistics
, 2008
"... The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in highdimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lassotype penalty. We establish a rate of convergence in the Fro ..."
Abstract

Cited by 171 (7 self)
 Add to MetaCart
(Show Context)
The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in highdimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lassotype penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate depends explicitly on how sparse the true concentration matrix is. We also show that a correlationbased version of the method exhibits better rates in the operator norm. The estimator is required to be positive definite, but we avoid having to use semidefinite programming by reparameterizing the objective function
Covariance regularization by thresholding
, 2007
"... This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or subGa ..."
Abstract

Cited by 154 (11 self)
 Add to MetaCart
(Show Context)
This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or subGaussian, and (log p)/n → 0, and obtain explicit rates. The results are uniform over families of covariance matrices which satisfy a fairly natural notion of sparsity. We discuss an intuitive resampling scheme for threshold selection and prove a general crossvalidation result that justifies this approach. We also compare thresholding to other covariance estimators in simulations and on an example from climate data. 1. Introduction. Estimation
Sparsistency and rates of convergence in large covariance matrices estimation
, 2009
"... This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probabi ..."
Abstract

Cited by 117 (11 self)
 Add to MetaCart
(Show Context)
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order (sn log pn/n) 1/2, where sn is the number of nonzero elements, pn is the size of the covariance matrix and n is the sample size. This explicitly spells out the contribution of highdimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter λn goes to 0 have been made explicit and compared under different penalties. As a result, for the L1penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: s ′ n = O(pn) at most, among O(p2 n) parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where s ′ n is the number of the nonzero elements on the offdiagonal entries. On the other hand, using the SCAD or hardthresholding penalty functions, there is no such a restriction.
Partial Correlation Estimation by Joint Sparse Regression Models
 JASA
, 2008
"... In this article, we propose a computationally efficient approach—space (Sparse PArtial Correlation Estimation)—for selecting nonzero partial correlations under the highdimensionlowsamplesize setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse re ..."
Abstract

Cited by 95 (8 self)
 Add to MetaCart
(Show Context)
In this article, we propose a computationally efficient approach—space (Sparse PArtial Correlation Estimation)—for selecting nonzero partial correlations under the highdimensionlowsamplesize setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simulation studies. It is shown that space performs well in both nonzero partial correlation selection and the identification of hub variables, and also outperforms two existing methods. We then apply space to a microarray breast cancer dataset and identify a set of hub genes that may provide important insights on genetic regulatory networks. Finally, we prove that, under a set of suitable assumptions, the proposed procedure is asymptotically consistent in terms of model selection and parameter estimation.
Generalized thresholding of large covariance matrices
 J. Amer. Statist. Assoc. (Theory and Methods
, 2009
"... We propose a new class of generalized thresholding operators which combine thresholding with shrinkage, and study generalized thresholding of the sample covariance matrix in high dimensions. Generalized thresholding of the covariance matrix has good theoretical properties and carries almost no compu ..."
Abstract

Cited by 67 (4 self)
 Add to MetaCart
We propose a new class of generalized thresholding operators which combine thresholding with shrinkage, and study generalized thresholding of the sample covariance matrix in high dimensions. Generalized thresholding of the covariance matrix has good theoretical properties and carries almost no computational burden. We obtain an explicit convergence rate in the operator norm that shows the tradeoff between the sparsity of the true model, dimension, and the sample size, and show that generalized thresholding is consistent over a large class of models as long as the dimension p and the sample size n satisfy log p/n → 0. In addition, we show
Sparse inverse covariance matrix estimation via linear programming
, 2010
"... This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by “sparse ” matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure ..."
Abstract

Cited by 54 (4 self)
 Add to MetaCart
This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by “sparse ” matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure that can effectively exploit such “sparsity”. The proposed method can be computed using linear programming and therefore has the potential to be used in very high dimensional problems. Oracle inequalities are established for the estimation error in terms of several operator norms, showing that the method is adaptive to different types of sparsity of the problem.
Network exploration via the adaptive LASSO and SCAD penalties
 Ann. Appl. Stat
, 2009
"... Graphical models are frequently used to explore networks, such as genetic networks, among a set of variables. This is usually carried out via exploring the sparsity of the precision matrix of the variables under consideration. Penalized likelihood methods are often used in such explorations. Yet, po ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
Graphical models are frequently used to explore networks, such as genetic networks, among a set of variables. This is usually carried out via exploring the sparsity of the precision matrix of the variables under consideration. Penalized likelihood methods are often used in such explorations. Yet, positivedefiniteness constraints of precision matrices make the optimization problem challenging. We introduce nonconcave penalties and the adaptive LASSO penalty to attenuate the bias problem in the network estimation. Through the local linear approximation to the nonconcave penalty functions, the problem of precision matrix estimation is recast as a sequence of penalized likelihood problems with a weighted L1 penalty and solved using the efficient algorithm of Friedman et al. [Biostatistics 9 (2008) 432–441]. Our estimation schemes are applied to two real datasets. Simulation experiments and asymptotic theory are used to justify our proposed methods. 1. Introduction. Network
Nonconcave penalized likelihood with NPdimensionality
 IEEE Trans. Inform. Theor
, 2011
"... Abstract—Penalized likelihood methods are fundamental to ultrahigh dimensional variable selection. How high dimensionality such methods can handle remains largely unknown. In this paper, we show that in the context of generalized linear models, such methods possess model selection consistency with o ..."
Abstract

Cited by 50 (14 self)
 Add to MetaCart
Abstract—Penalized likelihood methods are fundamental to ultrahigh dimensional variable selection. How high dimensionality such methods can handle remains largely unknown. In this paper, we show that in the context of generalized linear models, such methods possess model selection consistency with oracle properties even for dimensionality of nonpolynomial (NP) order of sample size, for a class of penalized likelihood approaches using foldedconcave penalty functions, which were introduced to ameliorate the bias problems of convex penalty functions. This fills a longstanding gap in the literature where the dimensionality is allowed to grow slowly with the sample size. Our results are also applicable to penalized likelihood with the L1penalty, which is a convex function at the boundary of the class of foldedconcave penalty functions under consideration. The coordinate optimization is implemented for finding the solution paths, whose performance is evaluated by a few simulation examples and the real data analysis. Index Terms—Coordinate optimization, foldedconcave penalty, high dimensionality, Lasso, nonconcave penalized likelihood, oracle property, SCAD, variable selection, weak oracle property. I.
Penalized Likelihood Methods for Estimation of sparse high dimensional directed acyclic graphs
, 2010
"... Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical, as well as biological systems, where directed edges between nodes represent the influence of components of the system o ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical, as well as biological systems, where directed edges between nodes represent the influence of components of the system on each other. Estimation of directed graphs from observational data is computationally NPhard. In addition, directed graphs with the same structure may be indistinguishable based on observations alone. When the nodes exhibit a natural ordering, the problem of estimating directed graphs reduces to the problem of estimating the structure of the network. In this paper, we propose an efficient penalized likelihood method for estimation of the adjacency matrix of directed acyclic graphs, when variables inherit a natural ordering. We study variable selection consistency of both the lasso, as well as the adaptive lasso penalties in high dimensional sparse settings, and propose an errorbased choice for selecting the tuning parameter. We show that although the lasso is only variable selection consistent under stringent conditions, the adaptive lasso can consistently estimate the true graph under the usual regularity assumptions. Simulation studies indicate that the correct ordering of the variables becomes less critical in estimation of high dimensional sparse networks.