Results 1 
7 of
7
On values taken by the largest prime factor of shifted primes
 Journal of the Australian Mathematical Society
"... Let P denote the set of prime numbers, and let P(n) denote the largest prime factor of an integer n> 1. We show that, for every real number 32/17 < η < (4 + 3 √ 2)/4, there exists a constant c(η)> 1 such that for every integer a � = 0, the set � p ∈ P: p = P(q − a) for some prime q with p η < q < c( ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Let P denote the set of prime numbers, and let P(n) denote the largest prime factor of an integer n> 1. We show that, for every real number 32/17 < η < (4 + 3 √ 2)/4, there exists a constant c(η)> 1 such that for every integer a � = 0, the set � p ∈ P: p = P(q − a) for some prime q with p η < q < c(η) p η � has relative asymptotic density one in the set of all prime numbers. Moreover, in the range 2 ≤ η < (4+3 √ 2)/4, one can take c(η) = 1+ε for any fixed ε> 0. In particular, our results imply that for every real number 0.486 ≤ ϑ ≤ 0.531, the relation P(q − a) ≍ q ϑ holds for infinitely many primes q. We use this result to derive a lower bound on the number of distinct prime divisors of the value of the Carmichael function taken on a product of shifted primes. Finally, we study iterates of the map q ↦ → P(q − a) for a> 0, and show that for infinitely many primes q, this map can be iterated at least (log log q) 1+o(1) times before it terminates. 1.
The Lucas–Pratt primality tree
 Math. Comp
"... Abstract. In 1876, E. Lucas showed that a quick proof of primality for a prime p could be attained through the prime factorization of p − 1 and a primitive root for p. V. Pratt’s proof that PRIMES is in NP, done via Lucas’s theorem, showed that a certificate of primality for a prime p could be obtai ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. In 1876, E. Lucas showed that a quick proof of primality for a prime p could be attained through the prime factorization of p − 1 and a primitive root for p. V. Pratt’s proof that PRIMES is in NP, done via Lucas’s theorem, showed that a certificate of primality for a prime p could be obtained in O(log 2 p) modular multiplications with integers at most p. We show that for all constants C ∈ R, the number of modular multiplications necessary to obtain this certificate is greater than C log p for a set of primes p with relative asymptotic density 1. 1.
COMMON VALUES OF THE ARITHMETIC FUNCTIONS φ AND σ
"... ABSTRACT. We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sumofdivisors function. This proves a 50year old conjecture of Erdős. Moreover, we show that there are infinitely many integers n such that φ(a) = n and σ(b) = n each ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
ABSTRACT. We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sumofdivisors function. This proves a 50year old conjecture of Erdős. Moreover, we show that there are infinitely many integers n such that φ(a) = n and σ(b) = n each have more than n c solutions, for some c> 0. The proofs rely on the recent work of the first two authors and Konyagin on the distribution of primes p for which a given prime divides some iterate of φ at p, and on a result of HeathBrown connecting the possible existence of Siegel zeros with the distribution of twin primes. 1.
PRIME CHAINS AND PRATT TREES
"... ABSTRACT. We study the distribution of prime chains, which are sequences p1,..., pk of primes for which pj+1 ≡ 1 (mod pj) for each j. We first give conditional upper bounds on the length of Cunningham chains, chains with pj+1 = 2pj +1 for each j. We give estimates for P (x), the number of chains wit ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
ABSTRACT. We study the distribution of prime chains, which are sequences p1,..., pk of primes for which pj+1 ≡ 1 (mod pj) for each j. We first give conditional upper bounds on the length of Cunningham chains, chains with pj+1 = 2pj +1 for each j. We give estimates for P (x), the number of chains with pk � x (k variable), and P (x; p), the number of chains with p1 = p and pk � px. The majority of the paper concerns the distribution of H(p), the length of the longest chain with pk = p, which is also the height of the Pratt tree for p. We show H(p) � c log log p and H(p) � (log p) 1−c′ for almost all p, with c, c ′ explicit positive constants. We can take, for any ε> 0, c = e − ε assuming the ElliottHalberstam conjecture. A stochastic model of the Pratt tree is introduced and analyzed. The model suggests that for most p � x, H(p) stays very close to e log log x. 1.
On Positive Integers n with a Certain Divisibility Property
"... In this paper, we study the positive integers n having at least two distinct prime factors such that the sum of the prime factors of n divides 2 n−1 − 1. 1 ..."
Abstract
 Add to MetaCart
In this paper, we study the positive integers n having at least two distinct prime factors such that the sum of the prime factors of n divides 2 n−1 − 1. 1
SIEVING VERY THIN SETS OF PRIMES, AND PRATT TREES WITH MISSING PRIMES
"... ABSTRACT. Suppose P is a set of primes, such that for every p ∈ P, every prime factor of p − 1 is also in P. We apply a new sieve method to show that either P contains all of the primes or the counting function of P is O(x 1−c) for some c> 0, where c depends only on the smallest prime not in P. Our ..."
Abstract
 Add to MetaCart
ABSTRACT. Suppose P is a set of primes, such that for every p ∈ P, every prime factor of p − 1 is also in P. We apply a new sieve method to show that either P contains all of the primes or the counting function of P is O(x 1−c) for some c> 0, where c depends only on the smallest prime not in P. Our proof makes use of results connected with Artin’s primitive root conjecture. 1
Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.5 On the Middle Prime Factor of an Integer
"... Given an integer n ≥ 2, let pm(n) denote the middle prime factor of n. We obtain an estimate for the sum of the reciprocals of pm(n) for n ≤ x. 1 ..."
Abstract
 Add to MetaCart
Given an integer n ≥ 2, let pm(n) denote the middle prime factor of n. We obtain an estimate for the sum of the reciprocals of pm(n) for n ≤ x. 1