Results 1 
5 of
5
Twotier relaxed heaps
 Proceedings of the 17th International Symposium on Algorithms and Computation, Lecture Notes in Computer Science 4288, SpringerVerlag
, 2006
"... Abstract. We introduce an adaptation of runrelaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worstcase cost of O(1) for findmin, insert, and decrease; and the worstcase cost of O(lg n) with at mos ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Abstract. We introduce an adaptation of runrelaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worstcase cost of O(1) for findmin, insert, and decrease; and the worstcase cost of O(lg n) with at most lg n + 3 lg lg n + O(1) element comparisons for delete, improving the bound of 3lg n + O(1) on the number of element comparisons known for runrelaxed heaps. Here, n denotes the number of elements stored prior to the operation in question, and lg n equals max {1, log 2 n}. 1
A framework for speeding up priorityqueue operations
, 2004
"... Abstract. We introduce a framework for reducing the number of element comparisons performed in priorityqueue operations. In particular, we give a priority queue which guarantees the worstcase cost of O(1) per minimum finding and insertion, and the worstcase cost of O(log n) with at most log n + O ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
Abstract. We introduce a framework for reducing the number of element comparisons performed in priorityqueue operations. In particular, we give a priority queue which guarantees the worstcase cost of O(1) per minimum finding and insertion, and the worstcase cost of O(log n) with at most log n + O(1) element comparisons per minimum deletion and deletion, improving the bound of 2log n + O(1) on the number of element comparisons known for binomial queues. Here, n denotes the number of elements stored in the data structure prior to the operation in question, and log n equals max {1,log 2 n}. We also give a priority queue that provides, in addition to the abovementioned methods, the prioritydecrease (or decreasekey) method. This priority queue achieves the worstcase cost of O(1) per minimum finding, insertion, and priority decrease; and the worstcase cost of O(log n) with at most log n + O(log log n) element comparisons per minimum deletion and deletion. CR Classification. E.1 [Data Structures]: Lists, stacks, and queues; E.2 [Data
Thin Heaps, Thick Heaps
, 2006
"... The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of thin heaps and one of thick heaps) that have the same amortized efficiency as Fibonacci heaps but need less space and promise better practical performance. As part of our development, we fill in a gap in Høyer’s analysis.
Abstract On the Power of Structural Violations in Priority Queues
"... We give a priority queue that guarantees the worstcase cost of Θ(1) per minimum finding, insertion, and decrease; and the worstcase cost of Θ(lg n) with at most lg n + O ( √ lg n) element comparisons per deletion. Here, n denotes the number of elements stored in the data structure prior to the ope ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We give a priority queue that guarantees the worstcase cost of Θ(1) per minimum finding, insertion, and decrease; and the worstcase cost of Θ(lg n) with at most lg n + O ( √ lg n) element comparisons per deletion. Here, n denotes the number of elements stored in the data structure prior to the operation in question, and lg n is a shorthand for max {1,log 2 n}. In contrast to a runrelaxed heap, which allows heaporder violations, our priority queue relies on structural violations. By mimicking a priority queue that allows heaporder violations with one that only allows structural violations, we improve the bound on the number of element comparisons per deletion to lg n + O(lg lg n).
Strict Fibonacci Heaps
"... Wepresentthefirstpointerbasedheapimplementationwith time bounds matching those of Fibonacci heaps in the worst case. We support makeheap, insert, findmin, meld and decreasekey in worstcase O(1) time, and delete and deletemin in worstcase O(lgn) time, where n is the size of the heap. The data s ..."
Abstract
 Add to MetaCart
Wepresentthefirstpointerbasedheapimplementationwith time bounds matching those of Fibonacci heaps in the worst case. We support makeheap, insert, findmin, meld and decreasekey in worstcase O(1) time, and delete and deletemin in worstcase O(lgn) time, where n is the size of the heap. The data structure uses linear space. A previous, very complicated, solution achieving the same time bounds in the RAM model made essential use of arrays and extensive use of redundant counter schemes to maintain balance. Our solution uses neither. Our key simplification is to discard the structure of the smaller heap when doing a meld. We use the pigeonhole principle in place of the redundant counter mechanism.