Results 1  10
of
148
The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1
 In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science
, 2005
"... In this paper we disprove the following conjecture due to Goemans [16] and Linial [24] (also see [5, 26]): “Every negative type metric embeds into ℓ1 with constant distortion.” We show that for every δ>0, and for large enough n, there is an npoint negative type metric which requires distortion atl ..."
Abstract

Cited by 125 (10 self)
 Add to MetaCart
In this paper we disprove the following conjecture due to Goemans [16] and Linial [24] (also see [5, 26]): “Every negative type metric embeds into ℓ1 with constant distortion.” We show that for every δ>0, and for large enough n, there is an npoint negative type metric which requires distortion atleast (log log n) 1/6−δ to embed into ℓ1. Surprisingly, our construction is inspired by the Unique Games Conjecture (UGC) of Khot [19], establishing a previously unsuspected connection between PCPs and the theory of metric embeddings. We first prove that the UGC implies superconstant hardness results for (nonuniform) SPARSEST CUT and MINIMUM UNCUT problems. It is already known that the UGC also implies an optimal hardness result for MAXIMUM CUT [20]. Though these hardness results depend on the UGC, the integrality gap instances rely “only ” on the PCP reductions for the respective problems. Towards this, we first construct an integrality gap instance for a natural SDP relaxation of UNIQUE GAMES. Then, we “simulate ” the PCP reduction and “translate ” the integrality gap instance of UNIQUE GAMES to integrality gap instances for the respective cut problems! This enables us to prove a (log log n) 1/6−δ integrality gap for (nonuniform) SPARSEST CUT and MINIMUM UNCUT, and an optimal integrality gap for MAXIMUM CUT. All our SDP solutions satisfy the socalled “triangle inequality ” constraints. This also shows, for the first time, that the triangle inequality constraints do not add any power to the GoemansWilliamson’s SDP relaxation of MAXIMUM CUT. The integrality gap for SPARSEST CUT immediately implies a lower bound for embedding negative type metrics into ℓ1. It also disproves the nonuniform version of Arora, Rao and Vazirani’s Conjecture [5], asserting that the integrality gap of the SPARSEST CUT SDP, with the triangle inequality constraints, is bounded from above by a constant.
Optimal algorithms and inapproximability results for every CSP
 In Proc. 40 th ACM STOC
, 2008
"... Semidefinite Programming(SDP) is one of the strongest algorithmic techniques used in the design of approximation algorithms. In recent years, Unique Games Conjecture(UGC) has proved to be intimately connected to the limitations of Semidefinite Programming. Making this connection precise, we show the ..."
Abstract

Cited by 86 (13 self)
 Add to MetaCart
Semidefinite Programming(SDP) is one of the strongest algorithmic techniques used in the design of approximation algorithms. In recent years, Unique Games Conjecture(UGC) has proved to be intimately connected to the limitations of Semidefinite Programming. Making this connection precise, we show the following result: If UGC is true, then for every constraint satisfaction problem(CSP) the best approximation ratio is given by a certain simple SDP. Specifically, we show a generic conversion from SDP integrality gaps to UGC hardness results for every CSP. This result holds both for maximization and minimization problems over arbitrary finite domains. Using this connection between integrality gaps and hardness results we obtain a generic polynomialtime algorithm for all CSPs. Assuming the Unique Games Conjecture, this algorithm achieves the optimal approximation ratio for every CSP. Unconditionally, for all 2CSPs the algorithm achieves an approximation ratio equal to the integrality gap of a natural SDP used in literature. Further the algorithm achieves at least as good an approximation ratio as the best known algorithms for several problems like MaxCut, Max2Sat, MaxDiCut
Maximizing nonmonotone submodular functions
 In Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2007
"... Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular fu ..."
Abstract

Cited by 85 (13 self)
 Add to MetaCart
Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NPhard. In this paper, we design the first constantfactor approximation algorithms for maximizing nonnegative submodular functions. In particular, we give a deterministic local search 1 2approximation and a randomizedapproximation algo
On the Hardness of Approximating Multicut and SparsestCut
 In Proceedings of the 20th Annual IEEE Conference on Computational Complexity
, 2005
"... We show that the MULTICUT, SPARSESTCUT, and MIN2CNF ≡ DELETION problems are NPhard to approximate within every constant factor, assuming the Unique Games Conjecture of Khot [STOC, 2002]. A quantitatively stronger version of the conjecture implies inapproximability factor of Ω(log log n). 1. ..."
Abstract

Cited by 73 (4 self)
 Add to MetaCart
We show that the MULTICUT, SPARSESTCUT, and MIN2CNF ≡ DELETION problems are NPhard to approximate within every constant factor, assuming the Unique Games Conjecture of Khot [STOC, 2002]. A quantitatively stronger version of the conjecture implies inapproximability factor of Ω(log log n). 1.
Gowers uniformity, influence of variables, and PCPs
 In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
, 2006
"... Gowers [Gow98, Gow01] introduced, for d ≥ 1, the notion of dimensiond uniformity U d (f) of a function f: G → C, where G is a finite abelian group. Roughly speaking, if a function has small Gowers uniformity of dimension d, then it “looks random ” on certain structured subsets of the inputs. We pro ..."
Abstract

Cited by 50 (2 self)
 Add to MetaCart
Gowers [Gow98, Gow01] introduced, for d ≥ 1, the notion of dimensiond uniformity U d (f) of a function f: G → C, where G is a finite abelian group. Roughly speaking, if a function has small Gowers uniformity of dimension d, then it “looks random ” on certain structured subsets of the inputs. We prove the following inverse theorem. Write G = G1 × · · · × Gn as a product of groups. If a bounded balanced function f: G1 × · · · Gn → C is such that U d (f) ≥ ε, then one of the coordinates of f has influence at least ε/2 O(d). Other inverse theorems are known [Gow98, Gow01, GT05, Sam05], and U 3 is especially well understood, but the properties of functions f with large U d (f), d ≥ 4, are not yet well characterized. The dimensiond Gowers inner product 〈{fS} 〉 U d of a collection {fS} S⊆[d] of functions is a related measure of pseudorandomness. The definition is such that if all the functions fS are equal to the same fixed function f, then 〈{fS} 〉 U d = U d (f). We prove that if fS: G1 × · · · × Gn → C is a collection of bounded functions such that 〈{fS} 〉 U d  ≥ ε and at least one of the fS is balanced, then there is a variable that has influence at least ε 2 /2 O(d) for at least four functions in the collection. Finally, we relate the acceptance probability of the “hypergraph longcode test ” proposed by Samorodnitsky and Trevisan to the Gowers inner product of the functions being tested and we deduce the following result: if the Unique Games Conjecture is true, then for every q ≥ 3 there is a PCP characterization of NP where the verifier makes q queries, has almost perfect completeness, and soundness at most 2q/2 q. For infinitely many q, the soundness is (q + 1)/2 q, which might be a tight result. Two applications of this results are that, assuming that the unique games conjecture is true, it is hard to approximate Max kCSP within a factor 2k/2 k ((k + 1)/2 k for infinitely many k), and it is hard to approximate Independent Set in graphs of degree D within a factor (log D) O(1) /D. 1
Nearoptimal algorithms for Unique Games
 In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
, 2006
"... Unique games are constraint satisfaction problems that can be viewed as a generalization of MaxCut to a larger domain size. The Unique Games Conjecture states that it is hard to distinguish between instances of unique games where almost all constraints are satisfiable and those where almost none ar ..."
Abstract

Cited by 40 (9 self)
 Add to MetaCart
Unique games are constraint satisfaction problems that can be viewed as a generalization of MaxCut to a larger domain size. The Unique Games Conjecture states that it is hard to distinguish between instances of unique games where almost all constraints are satisfiable and those where almost none are satisfiable. It has been shown to imply a number of inapproximability results for fundamental problems that seem difficult to obtain by more standard complexity assumptions. Thus, proving or refuting this conjecture is an important goal. We present significantly improved approximation algorithms for unique games. For instances with domain size k where the optimal solution satisfies 1 − ε fraction of all constraints, our algorithms satisfy roughly k −ε/(2−ε) and 1 − O ( √ ε log k) fraction of all constraints. Our algorithms are based on rounding a natural semidefinite programming relaxation for the problem and their performance almost matches the integrality gap of this relaxation. Our results are near optimal if the Unique Games Conjecture is true, i.e. any improvement (beyond low order terms) would refute the conjecture. 1
Conditional hardness for approximate coloring
 In STOC 2006
, 2006
"... We study the APPROXIMATECOLORING(q, Q) problem: Given a graph G, decide whether χ(G) ≤ q or χ(G) ≥ Q (where χ(G) is the chromatic number of G). We derive conditional hardness for this problem for any constant 3 ≤ q < Q. For q ≥ 4, our result is based on Khot’s 2to1 conjecture [Khot’02]. For q = ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
We study the APPROXIMATECOLORING(q, Q) problem: Given a graph G, decide whether χ(G) ≤ q or χ(G) ≥ Q (where χ(G) is the chromatic number of G). We derive conditional hardness for this problem for any constant 3 ≤ q < Q. For q ≥ 4, our result is based on Khot’s 2to1 conjecture [Khot’02]. For q = 3, we base our hardness result on a certain ‘⊲< shaped ’ variant of his conjecture. We also prove that the problem ALMOST3COLORINGε is hard for any constant ε> 0, assuming Khot’s Unique Games conjecture. This is the problem of deciding for a given graph, between the case where one can 3color all but a ε fraction of the vertices without monochromatic edges, and the case where the graph contains no independent set of relative size at least ε. Our result is based on bounding various generalized noisestability quantities using the invariance principle of Mossel et al [MOO’05].
Gaussian Bounds for Noise Correlation of Functions and Tight Analysis of Long Codes
 In IEEE Symposium on Foundations of Computer Science (FOCS
, 2008
"... In this paper we derive tight bounds on the expected value of products of low influence functions defined on correlated probability spaces. The proofs are based on extending Fourier theory to an arbitrary number of correlated probability spaces, on a generalization of an invariance principle recentl ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
In this paper we derive tight bounds on the expected value of products of low influence functions defined on correlated probability spaces. The proofs are based on extending Fourier theory to an arbitrary number of correlated probability spaces, on a generalization of an invariance principle recently obtained with O’Donnell and Oleszkiewicz for multilinear polynomials with low influences and bounded degree and on properties of multidimensional Gaussian distributions. We present two applications of the new bounds to the theory of social choice. We show that Majority is asymptotically the most predictable function among all low influence functions given a random sample of the voters. Moreover, we derive an almost tight bound in the context of Condorcet aggregation and low influence voting schemes on a large number of candidates. In particular, we show that for every low influence aggregation function, the probability that Condorcet voting on k candidates will result in a unique candidate that is preferable to all others is k−1+o(1). This matches the asymptotic behavior of the majority function for which the probability is k−1−o(1). A number of applications in hardness of approximation in theoretical computer science were
Approximation algorithms for unique games
 In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
"... Abstract: A unique game is a type of constraint satisfaction problem with two variables per constraint. The value of a unique game is the fraction of the constraints satisfied by an optimal solution. Khot (STOC’02) conjectured that for arbitrarily small γ,ε> 0 it is NPhard to distinguish games of va ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
Abstract: A unique game is a type of constraint satisfaction problem with two variables per constraint. The value of a unique game is the fraction of the constraints satisfied by an optimal solution. Khot (STOC’02) conjectured that for arbitrarily small γ,ε> 0 it is NPhard to distinguish games of value smaller than γ from games of value larger than 1 − ε. Several recent inapproximability results rely on Khot’s conjecture. Considering the case of subconstant ε, Khot (STOC’02) analyzes an algorithm based on semidefinite programming that satisfies a constant fraction of the constraints in unique games of value 1 − O(k−10 · (logk) −5), where k is the size of the domain of the variables. We present a polynomial time algorithm based on semidefinite programming that, given a unique game of value 1−O(1/logn), satisfies a constant fraction of the constraints, where n is the number of variables. This is an improvement over Khot’s algorithm if the domain is sufficiently large.
Subexponential algorithms for Unique Games and related problems
 In 51 st IEEE FOCS
"... We give subexponential time approximation algorithms for the unique games and the small set expansion problems. Specifically, for some absolute constant c, we give: 1. An exp(kn ε)time algorithm that, given as input a kalphabet unique game on n variables that has an assignment satisfying 1 − ε c f ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
We give subexponential time approximation algorithms for the unique games and the small set expansion problems. Specifically, for some absolute constant c, we give: 1. An exp(kn ε)time algorithm that, given as input a kalphabet unique game on n variables that has an assignment satisfying 1 − ε c fraction of its constraints, outputs an assignment satisfying 1 − ε fraction of the constraints. 2. An exp(n ε /δ)time algorithm that, given as input an nvertex regular graph that has a set S of δn vertices with edge expansion at most ε c, outputs a set S ′ of at most δn vertices with edge expansion at most ε. We also obtain a subexponential algorithm with improved approximation for the MultiCut problem, as well as subexponential algorithms with improved approximations to MaxCut, SparsestCut and Vertex Cover on some interesting subclasses of instances. Khot’s Unique Games Conjecture (UGC) states that it is NPhard to achieve approximation guarantees such as ours for unique games. While our results stop short of refusing the UGC, they do suggest that Unique Games is significantly easier than NPhard problems such as 3SAT,3LIN, Label Cover and more, that are believed not to have a subexponential algorithm achieving a nontrivial approximation ratio. The main component in our algorithms is a new result on graph decomposition that may have other applications. Namely we show that for every δ> 0 and a regular nvertex graph G, by changing at most δ fraction of G’s edges, one can break G into disjoint parts so that the induced graph on each part has at most n ε eigenvalues larger than 1 − η (where ε, η depend polynomially on δ). Our results are based on combining this decomposition with previous algorithms for unique games on graphs with few large eigenvalues (Kolla and Tulsiani 2007, Kolla 2010). 1