Results 1  10
of
86
A Framework for Uplink Power Control in Cellular Radio Systems
 IEEE Journal on Selected Areas in Communications
, 1996
"... In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection by limiting the interference caused by other users. Several models have been considered including: (1) fixed base station assignment where the assignment of users to base stations ..."
Abstract

Cited by 390 (18 self)
 Add to MetaCart
In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection by limiting the interference caused by other users. Several models have been considered including: (1) fixed base station assignment where the assignment of users to base stations is fixed, (2) minimum power assignment where a user is iteratively assigned to the base station at which its signal to interference ratio is highest, and (3) diversity reception, where a user's signal is combined from several or perhaps all base stations. For the above models, the uplink power control problem can be reduced to finding a vector p of users' transmitter powers satisfying p I(p) where the jth constraint p j I j (p) describes the interference that user j must overcome to achieve an acceptable connection. This work unifies results found for these systems by identifying common properties of the interference constraints. It is also shown that systems in which transmitter powers ...
Multiaccess Fading Channels  Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities
 IEEE Trans. Inform. Theory
"... In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the timevarying nature of the environment. In this twopart paper, we consider the problem of optimal resource allocation from an informationtheoretic p ..."
Abstract

Cited by 174 (9 self)
 Add to MetaCart
In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the timevarying nature of the environment. In this twopart paper, we consider the problem of optimal resource allocation from an informationtheoretic point of view. We focus on the multiaccess fading channel with Gaussian noise, and define two notions of capacity depending on whether the traffic is delaysensitive or not. In part I, we characterize the throughput capacity region which contains the longterm achievable rates through the timevarying channel. We show that each point on the boundary of the region can be achieved by successive decoding. Moreover, the optimal rate and power allocations in each fading state can be explicitly obtained in a greedy manner. The solution can be viewed as the generalization of the waterfilling construction for singleuser channels to multiaccess channels with arbitrary number of users, and exploits the underlying polymatroid structure of the capacity region. In part II, we characterize a delaylimited capacity region and obtain analogous results.
Distributed Multiuser Power Control for Digital Subscriber Lines
, 2002
"... This paper considers the multiuser power control problem in a frequencyselective interference channel. The interference channel is modeled as a noncooperative game, and the existence and uniqueness of a Nash equilibrium are established for a twoplayer version of the game. An iterative waterfillin ..."
Abstract

Cited by 170 (22 self)
 Add to MetaCart
This paper considers the multiuser power control problem in a frequencyselective interference channel. The interference channel is modeled as a noncooperative game, and the existence and uniqueness of a Nash equilibrium are established for a twoplayer version of the game. An iterative waterfilling algorithm is proposed to efficiently reach the Nash equilibrium. The iterative waterfilling algorithm can be implemented distributively without the need for centralized control. It implicitly takes into account the loop transfer functions and cross couplings, and it reaches a competitively optimal power allocation by offering an opportunity for loops to negotiate the best use of power and frequency with each other. When applied to the upstream power backoff problem in veryhigh bitrate digital subscriber lines and the downstream spectral compatibility problem in asymmetric digital subscriber lines, the new power control algorithm is found to give a significant performance improvement when compared with existing methods.
Stochastic Power Control for Cellular Radio Systems
 IEEE Trans. Commun
, 1997
"... For wireless communication systems, iterative power control algorithms have been proposed to minimize transmitter powers while maintaining reliable communication between mobiles and base stations. To derive deterministic convergence results, these algorithms require perfect measurements of one or mo ..."
Abstract

Cited by 89 (8 self)
 Add to MetaCart
For wireless communication systems, iterative power control algorithms have been proposed to minimize transmitter powers while maintaining reliable communication between mobiles and base stations. To derive deterministic convergence results, these algorithms require perfect measurements of one or more of the following parameters: (i) the mobile's signal to interference ratio (SIR) at the receiver, (ii) the interference experienced by the mobile, and (iii) the bit error rate. However, these quantities are often difficult to measure and deterministic convergence results neglect the effect of stochastic measurements. In this work, we develop distributed iterative power control algorithms that use readily available measurements. Two classes of power control algorithms are proposed. Since the measurements are random, the proposed algorithms evolve stochastically and we define the convergence in terms of the mean squared error (MSE) of the power vector from the optimal power vector that is t...
Integrated Power Control and Base Station Assignment
 IEEE Transactions on Vehicular Technology
, 1995
"... In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection while limiting the interference seen by other users. Previous work has focused on maximizing the minimum carrier to interference ratio (CIR) or attaining a common CIR over all rad ..."
Abstract

Cited by 88 (12 self)
 Add to MetaCart
In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection while limiting the interference seen by other users. Previous work has focused on maximizing the minimum carrier to interference ratio (CIR) or attaining a common CIR over all radio links. However, previous work has assumed the assignment of mobiles to base stations is known and fixed. In this work, we integrate power control and base station assignment. In the context of a CDMA system, we consider the minimization of the total transmitted uplink power subject to maintaining an individual target CIR for each mobile. This minimization occurs over the set of power vectors and base station assignments. We show that this problem has special structure and identify synchronous and asynchronous distributed algorithms that find the optimal power vector and base station assignment. Keywords Power control, Cellular radio, CDMA, Handoff, Base station assignment I. Introduct...
Optimal Sequences, Power Control, and User Capacity of Synchronous CDMA Systems with Linear MMSE Multiuser Receivers
 IEEE TRANS. INFORM. THEORY
, 1999
"... There has been intense effort in the past decade to develop multiuser receiver structures which mitigate interference between users in spreadspectrum systems. While much of this research is performed at the physical layer, the appropriate power control and choice of signature sequences in conjuncti ..."
Abstract

Cited by 78 (5 self)
 Add to MetaCart
There has been intense effort in the past decade to develop multiuser receiver structures which mitigate interference between users in spreadspectrum systems. While much of this research is performed at the physical layer, the appropriate power control and choice of signature sequences in conjunction with multiuser receivers and the resulting network user capacity is not well understood. In this paper we will focus on a single cell and consider both the uplink and downlink scenarios and assume a synchronous CDMA (SCDMA) system. We characterize the user capacity of a single cell with the optimal linear receiver (MMSE receiver). The user capacity of the system is the maximum number of users per unit processing gain admissible in the system such that each user has its qualityofservice (QoS) requirement (expressed in terms of its desired signaltointerference ratio) met. Our characterization allows us to describe the user capacity through a simple effective bandwidth characterization: Users are allowed in the system if and only if the sum of their effective bandwidths is less than the processing gain of the system. The effective bandwidth of each user is a simple monotonic function of its QoS requirement. We identify the optimal signature sequences and power control strategies so that the users meet their QoS requirement. The optimality is in the sense of minimizing the sum of allocated powers. It turns out that with this optimal allocation of signature sequences and powers, the linear MMSE receiver is just the corresponding matched filter for each user. We also characterize the effect of transmit power constraints on the user capacity.
Multiaccess Fading Channels  Part II: DelayLimited Capacities
 IEEE Trans. Inform. Theory
"... In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the timevarying nature of the environment. In this twopart paper, we consider the problem of optimal resource allocation from an informationtheoretic p ..."
Abstract

Cited by 71 (3 self)
 Add to MetaCart
In multiaccess wireless systems, dynamic allocation of resources such as transmit power, bandwidths, and rates is an important means to deal with the timevarying nature of the environment. In this twopart paper, we consider the problem of optimal resource allocation from an informationtheoretic point of view. We focus on the multiaccess fading channel with Gaussian noise, and define two notions of capacity depending on whether the traffic is delaysensitive or not. In Part I, we have analyzed the throughput capacity region which characterizes the longterm achievable rates through the timevarying channel. However, the delay experienced depends on how fast the channel varies. In the present paper, Part II, we introduce a notion of delaylimited capacity which is the maximum rate achievable with delay independent of how slow the fading is. We characterize the delaylimited capacity region of the multiaccess fading channel and the associated optimal resource allocation schemes. We show that successive decoding is optimal, and the optimal decoding order and power allocation can be found explicitly as a function of the fading states; this is a consequence of an underlying polymatroid structure that we exploit.
InformationTheoretic Considerations for Symmetric, Cellular, MultipleAccess Fading Channels  Part II
, 1997
"... A simple idealized linear (and planar) uplink, cellular, multipleaccess communication model, where only adjacent cell interference is present and all signals may experience fading is considered. Shannon theoretic arguments are invoked to gain insight into the implications on performance of the main ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
A simple idealized linear (and planar) uplink, cellular, multipleaccess communication model, where only adjacent cell interference is present and all signals may experience fading is considered. Shannon theoretic arguments are invoked to gain insight into the implications on performance of the main system parameters and multipleaccess techniques. The model treated in Part I [1] is extended here to account for cellsite receivers that may process also the received signal at an adjacent cell site, compromising thus between the advantage of incorporating additional information from other cell sites on one hand and the associated excess processing complexity on the other. Various settings which include fading, timedivision multiple access (TDMA), wideband (WB), and (optimized) fractional intercell time sharing (ICTS) protocols are investigated and compared. In this case and for the WB approach and a large number of users per cell it is found, surprisingly, that fading may enhance performance in terms of Shannon theoretic achievable rates. The linear model is extended to account for general linear and planar configurations. The effect of a random number of users per cell is investigated and it is demonstrated that randomization is beneficial. Certain aspects of diversity as well as some features of TDMA and orthogonal codedivision multiple access (CDMA) techniques in the presence of fading are studied in an isolated cell scenario.
Asymptotically Optimal WaterFilling in Vector MultipleAccess Channels
 IEEE Trans. Inform. Theory
, 2001
"... Dynamic resource allocation is an important means to increase the sum capacity of fading multipleaccess channels (MACs). In this paper, we consider vector multiaccess channels (channels where each user has multiple degrees of freedom) and study the effect of power allocation as a function of the ch ..."
Abstract

Cited by 63 (4 self)
 Add to MetaCart
Dynamic resource allocation is an important means to increase the sum capacity of fading multipleaccess channels (MACs). In this paper, we consider vector multiaccess channels (channels where each user has multiple degrees of freedom) and study the effect of power allocation as a function of the channel state on the sum capacity (or spectral efficiency) defined as the maximum sum of rates of users per unit degree of freedom at which the users can jointly transmit reliably, in an information theoretic sense, assuming random directions of received signal. Directsequence codedivision multipleaccess (DSCDMA) channels and MACs with multiple antennas at the receiver are two systems that fall under the purview of our model. Our main result is the identification of a simple dynamic powerallocation scheme that is optimal in a large system, i.e., with a large number of users and a correspondingly large number of degrees of freedom. A key feature of this policy is that, for any user, it depends on the instantaneous amplitude of channel state of that user alone and the structure of the policy is "waterfilling." In the context of DSCDMA and in the special case of no fading, the asymptotically optimal power policy of waterfilling simplifies to constant power allocation over all realizations of signature sequences; this result verifies the conjecture made in [28]. We study the behavior of the asymptotically optimal waterfilling policy in various regimes of number of users per unit degree of freedom and signaltonoise ratio (SNR). We also generalize this result to multiple classes, i.e., the situation when users in different classes have different average power constraints.