Results 1  10
of
14
Theorybased causal induction
 In
, 2003
"... Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various s ..."
Abstract

Cited by 35 (15 self)
 Add to MetaCart
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations of the cooccurrence frequencies between causes and effects, interactions between physical objects, or patterns of spatial or temporal coincidence. These different modes of learning are typically thought of as distinct psychological processes and are rarely studied together, but at heart they present the same inductive challenge—identifying the unobservable mechanisms that generate observable relations between variables, objects, or events, given only sparse and limited data. We present a computationallevel analysis of this inductive problem and a framework for its solution, which allows us to model all these forms of causal learning in a common language. In this framework, causal induction is the product of domaingeneral statistical inference guided by domainspecific prior knowledge, in the form of an abstract causal theory. We identify 3 key aspects of abstract prior knowledge—the ontology of entities, properties, and relations that organizes a domain; the plausibility of specific causal relationships; and the functional form of those relationships—and show how they provide the constraints that people need to induce useful causal models from sparse data.
Bayesian models of cognition
"... For over 200 years, philosophers and mathematicians have been using probability theory to describe human cognition. While the theory of probabilities was first developed as a means of analyzing games of chance, it quickly took on a larger and deeper significance as a formal account of how rational a ..."
Abstract

Cited by 23 (1 self)
 Add to MetaCart
For over 200 years, philosophers and mathematicians have been using probability theory to describe human cognition. While the theory of probabilities was first developed as a means of analyzing games of chance, it quickly took on a larger and deeper significance as a formal account of how rational agents should reason in situations of uncertainty
Bayesian generic priors for causal learning
 Psychological Review
, 2008
"... The article presents a Bayesian model of causal learning that incorporates generic priors—systematic assumptions about abstract properties of a system of cause–effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes—causes that are few in number and high ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
The article presents a Bayesian model of causal learning that incorporates generic priors—systematic assumptions about abstract properties of a system of cause–effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes—causes that are few in number and high in their individual powers to produce or prevent effects. The SS power model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently (P. W. Cheng, 1997). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.
Bayesian approaches to associative learning: From passive to active learning
 Learning & Behavior
, 2008
"... Traditional associationist models represent an organism’s knowledge state by a single strength of association on each associative link. Bayesian models instead represent knowledge by a distribution of graded degrees of belief over a range of candidate hypotheses. Many traditional associationist mode ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
Traditional associationist models represent an organism’s knowledge state by a single strength of association on each associative link. Bayesian models instead represent knowledge by a distribution of graded degrees of belief over a range of candidate hypotheses. Many traditional associationist models assume that the learner is passive, adjusting strengths of association only in reaction to stimuli delivered by the environment. Bayesian models, on the other hand, can describe how the learner should actively probe the environment to learn optimally. The first part of this article reviews two Bayesian accounts of backward blocking, a phenomenon that is challenging for many traditional theories. The broad Bayesian framework, in which these models reside, is also selectively reviewed. The second part focuses on two formalizations of optimal active learning: maximizing either the expected information gain or the probability gain. New analyses of optimal active learning by a Kalman filter and by a noisylogic gate show that these two Bayesian models make different predictions for some environments. The Kalman filter predictions are disconfirmed in at least one case. Bayesian formalizations of learning are a revolutionary advance over traditional approaches. Bayesian models assume that the learner maintains multiple candidate hypotheses with differing degrees of belief, unlike traditional
The role of causal models in analogical inference
 Journal of Experimental Psychology: Learning, Memory and Cognition
, 2008
"... Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by causal models of the source and target. In 3 experiments, the authors explored the possibility that people may use causal models to assess the strength of analogical inferences. Experiments 1–2 showed that reducing analogical overlap by eliminating a shared causal relation (a preventive cause present in the source) from the target increased inductive strength even though it decreased similarity of the analogs. These findings were extended in Experiment 3 to crossdomain analogical inferences based on correspondences between higher order causal relations. Analogical inference appears to be mediated by building and then running a causal model. The implications of the present findings for theories of both analogy and causal inference are discussed.
Learning to learn causal models
"... Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems t ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning.
Learning the form of causal relationships using hierarchical Bayesian models
 Cognitive Science
, 2010
"... People learn quickly when reasoning about causal relationships, making inferences from limited data and avoiding spurious inferences. Efficient learning depends on abstract knowledge, which is often domain or context specific, and much of it must be learned. While such knowledge effects are well doc ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
People learn quickly when reasoning about causal relationships, making inferences from limited data and avoiding spurious inferences. Efficient learning depends on abstract knowledge, which is often domain or context specific, and much of it must be learned. While such knowledge effects are well documented, little is known about exactly how we acquire knowledge that constrains learning. This work focuses on knowledge of the functional form of causal relationships; there are many kinds of relationships that can apply between causes and their effects, and knowledge of the form such a relationship takes is important in order to quickly identify the real causes of an observed effect. We developed a hierarchical Bayesian model of the acquisition of knowledge of the functional form of causal relationships and tested it in five experimental studies, considering disjunctive and conjunctive relationships, failure rates, and crossdomain effects. The Bayesian model accurately predicted human judgments and outperformed several alternative models.
Bayes and blickets: Effects of knowledge on causal induction in children and adults
"... People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal acc ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4yearolds, using tasks in which participants learned about the causal properties of a set of objects. The studies varied the two factors that our Bayesian approach predicted should be relevant to causal induction: the prior probability with which causal relations exist, and the assumption of a deterministic or a probabilistic relation between cause and effect. Adults ’ judgments (Experiments 1, 2, and 4) were in close correspondence with the quantitative predictions of the model, and children’s judgments (Experiments 3 and 5) agreed qualitatively with this account.
How Bad Is It? – A Branching Activity Model to Estimate the Impact of Information Security Breaches
"... This paper proposes an analysis framework and model for estimating the impact of information security breach episodes. Previous methods either lack empirical grounding or are not sufficiently rigorous, general or flexible. There has also been no consistent model that serves theoretical and empirical ..."
Abstract
 Add to MetaCart
This paper proposes an analysis framework and model for estimating the impact of information security breach episodes. Previous methods either lack empirical grounding or are not sufficiently rigorous, general or flexible. There has also been no consistent model that serves theoretical and empirical research, and also professional practice. The proposed framework adopts an ex ante decision frame consistent with rational economic decisionmaking, and measures breach consequences via the anticipated costs of recovery and restoration by all affected stakeholders. The proposed branching activity model is an event tree whose structure and branching conditions can be estimated using probabilistic inference from evidence – ‘Indicators of Impact’. This approach can facilitate reliable model estimation when evidence is imperfect, incomplete, ambiguous, or contradictory. The proposed method should be especially useful for modeling consequences that extend beyond the breached organization, including cascading consequences in critical infrastructures. Monte Carlo methods can be used to estimate the distribution of aggregate measures of impact such as total cost. Noneconomic aggregate measures of impact can also be estimated.
Deconfounding Hypothesis Generation and Evaluation in Bayesian Models
"... Bayesian models of cognition are typically used to describe human learning and inference at the computational level, identifying which hypotheses people should select to explain observed data given a particular set of inductive biases. However, such an analysis can be consistent with human behavior ..."
Abstract
 Add to MetaCart
Bayesian models of cognition are typically used to describe human learning and inference at the computational level, identifying which hypotheses people should select to explain observed data given a particular set of inductive biases. However, such an analysis can be consistent with human behavior even if people are not actually carrying out exact Bayesian inference. We analyze a simple algorithm by which people might be approximating Bayesian inference, in which a limited set of hypotheses are generated and then evaluated using Bayes ’ rule. Our mathematical results indicate that a purely computationallevel analysis of learners using this algorithm would confound the distinct processes of hypothesis generation and hypothesis evaluation. We use a causal learning experiment to establish empirically that the processes of generation and evaluation can be distinguished in human learners, demonstrating the importance of recognizing this distinction when interpreting Bayesian models.