Results 1  10
of
2,365
Surface reconstruction from unorganized points
 COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)
, 1992
"... We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be know ..."
Abstract

Cited by 692 (8 self)
 Add to MetaCart
We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from twodimensional slices, and interactive surface sketching.
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 519 (6 self)
 Add to MetaCart
A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in many practical applications, some a priori knowledge exists which considerably simplifies the problem. In visual navigation, for example, the motion between successive positions is usually approximately known. From this initial estimate, our algorithm computes observer motion with very good precision, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points in one set to the closest points in the other. A statistical method based on the distance distribution is used to deal with outliers, occlusion, appearance and disappearance, which allows us to do subsetsubset matching. A leastsquares technique is used to estimate 3D motion from the point correspondences, which reduces the average distance between points in the two sets. Both synthetic and real data have been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion estimate.
Image registration methods: a survey
 Image and Vision Computing
, 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract

Cited by 467 (8 self)
 Add to MetaCart
This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and featurebased) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q 2003 Elsevier B.V. All rights reserved.
A Survey of Medical Image Registration
, 1998
"... The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of t ..."
Abstract

Cited by 451 (5 self)
 Add to MetaCart
The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of the classification show definite trends in the evolving registration techniques, which will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on segmented points or surfaces, or on techniques endeavoring to use the full information content of the images involved. Keywords: registration, matching Received May 25, 1997
The Digital Michelangelo Project: 3D Scanning of Large Statues
, 2000
"... We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merg ..."
Abstract

Cited by 427 (8 self)
 Add to MetaCart
We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merging, and viewing scanned data. As a demonstration of this system, we digitized 10 statues by Michelangelo, including the wellknown figure of David, two building interiors, and all 1,163 extant fragments of the Forma Urbis Romae, a giant marble map of ancient Rome. Our largest single dataset is of the David  2 billion polygons and 7,000 color images. In this paper, we discuss the challenges we faced in building this system, the solutions we employed, and the lessons we learned. We focus in particular on the unusual design of our laser triangulation scanner and on the algorithms and software we developed for handling very large scanned models. CR Categories: I.2.10 [Artificial Intelligence]...
A search engine for 3d models
 ACM Transactions on Graphics
, 2003
"... As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional textbased search techniques are not always effective for 3D data. In this paper, we investigate new shapebased search methods. The key challen ..."
Abstract

Cited by 260 (21 self)
 Add to MetaCart
As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional textbased search techniques are not always effective for 3D data. In this paper, we investigate new shapebased search methods. The key challenges are to develop query methods simple enough for novice users and matching algorithms robust enough to work for arbitrary polygonal models. We present a webbased search engine system that supports queries based on 3D sketches, 2D sketches, 3D
Point Set Surfaces
, 2001
"... We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We pre ..."
Abstract

Cited by 254 (36 self)
 Add to MetaCart
We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We present tools to increase or decrease the density of the points, thus, allowing an adjustment of the spacing among the points to control the fidelity of the representation. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.
A New Point Matching Algorithm for NonRigid Registration
, 2002
"... Featurebased methods for nonrigid registration frequently encounter the correspondence problem. Regardless of whether points, lines, curves or surface parameterizations are used, featurebased nonrigid matching requires us to automatically solve for correspondences between two sets of features. I ..."
Abstract

Cited by 247 (2 self)
 Add to MetaCart
Featurebased methods for nonrigid registration frequently encounter the correspondence problem. Regardless of whether points, lines, curves or surface parameterizations are used, featurebased nonrigid matching requires us to automatically solve for correspondences between two sets of features. In addition, there could be many features in either set that have no counterparts in the other. This outlier rejection problem further complicates an already di#cult correspondence problem. We formulate featurebased nonrigid registration as a nonrigid point matching problem. After a careful review of the problem and an indepth examination of two types of methods previously designed for rigid robust point matching (RPM), we propose a new general framework for nonrigid point matching. We consider it a general framework because it does not depend on any particular form of spatial mapping. We have also developed an algorithmthe TPSRPM algorithmwith the thinplate spline (TPS) as the parameterization of the nonrigid spatial mapping and the softassign for the correspondence. The performance of the TPSRPM algorithm is demonstrated and validated in a series of carefully designed synthetic experiments. In each of these experiments, an empirical comparison with the popular iterated closest point (ICP) algorithm is also provided. Finally, we apply the algorithm to the problem of nonrigid registration of cortical anatomical structures which is required in brain mapping. While these results are somewhat preliminary, they clearly demonstrate the applicability of our approach to real world tasks involving featurebased nonrigid registration.
Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans
, 1994
"... A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot use ..."
Abstract

Cited by 244 (8 self)
 Add to MetaCart
A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot uses twodimensional laser range scans for localization, it is difficult to accurately detect and localize landmarks in the environment (such as corners and occlusions) from the range scans. In this paper, we develop two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems. The first algorithm is based on matching data points with tangent directions in two scans and minimizing a distance function in order to solve the displacementbetween the scans. The second algorithm establishes correspondences between points in the two scans and then solves the pointtopoint leastsquares probl...
Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors
, 2003
"... One of the challenges in 3D shape matching arises from the fact that in many applications, models should be considered to be the same if they differ by a rotation. Consequently, when comparing two models, a similarity metric implicitly provides the measure of similarity at the optimal alignment. E ..."
Abstract

Cited by 217 (9 self)
 Add to MetaCart
One of the challenges in 3D shape matching arises from the fact that in many applications, models should be considered to be the same if they differ by a rotation. Consequently, when comparing two models, a similarity metric implicitly provides the measure of similarity at the optimal alignment. Explicitly solving for the optimal alignment is usually impractical. So, two general methods have been proposed for addressing this issue: (1) Every model is represented using rotation invariant descriptors. (2) Every model is described by a rotation dependent descriptor that is aligned into a canonical coordinate system defined by the model. In this paper, we discuss the limitations of canonical alignment and present a new mathematical tool, based on spherical harmonics, for obtaining rotation invariant representations. We describe the properties of this tool and show how it can be applied to a number of existing, orientation dependent, descriptors to improve their matching performance. The advantage of this is twofold: First, it improves the matching performance of many descriptors. Second, it reduces the dimensionality of the descriptor, providing a more compact representation, which in turn makes comparing two models more efficient.