Results 1  10
of
156
An introduction to boosting and leveraging
 Advanced Lectures on Machine Learning, LNCS
, 2003
"... ..."
LAGRANGE MULTIPLIERS AND OPTIMALITY
, 1993
"... Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write firstorder optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions ..."
Abstract

Cited by 89 (7 self)
 Add to MetaCart
Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write firstorder optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions than equations, have demanded deeper understanding of the concept and how it fits into a larger theoretical picture. A major line of research has been the nonsmooth geometry of onesided tangent and normal vectors to the set of points satisfying the given constraints. Another has been the gametheoretic role of multiplier vectors as solutions to a dual problem. Interpretations as generalized derivatives of the optimal value with respect to problem parameters have also been explored. Lagrange multipliers are now being seen as arising from a general rule for the subdifferentiation of a nonsmooth objective function which allows blackandwhite constraints to be replaced by penalty expressions. This paper traces such themes in the current theory of Lagrange multipliers, providing along the way a freestanding exposition of basic nonsmooth analysis as motivated by and applied to this subject.
Computing the optimal strategy to commit to
 IN PROCEEDINGS OF THE 7TH ACM CONFERENCE ON ELECTRONIC COMMERCE (ACMEC
, 2006
"... In multiagent systems, strategic settings are often analyzed under the assumption that the players choose their strategies simultaneously. However, this model is not always realistic. In many settings, one player is able to commit to a strategy before the other player makes a decision. Such models a ..."
Abstract

Cited by 88 (19 self)
 Add to MetaCart
In multiagent systems, strategic settings are often analyzed under the assumption that the players choose their strategies simultaneously. However, this model is not always realistic. In many settings, one player is able to commit to a strategy before the other player makes a decision. Such models are synonymously referred to as leadership, commitment, or Stackelberg models, and optimal play in such models is often significantly different from optimal play in the model where strategies are selected simultaneously. The recent surge in interest in computing gametheoretic solutions has so far ignored leadership models (with the exception of the interest in mechanism design, where the designer is implicitly in a leadership position). In this paper, we study how to compute optimal strategies to commit to under both commitment to pure strategies and commitment to mixed strategies, in both normalform and Bayesian games. We give both positive results (efficient algorithms) and negative results (NPhardness results).
Leakageresilient cryptography
 In 49th FOCS
, 2008
"... We construct a streamcipher SC whose implementation is secure even if a bounded amount of arbitrary (adaptively, adversarially chosen) information about the internal state of SC is leaked during computation of each output block. This captures all possible sidechannel attacks on SC where (1) the am ..."
Abstract

Cited by 81 (7 self)
 Add to MetaCart
We construct a streamcipher SC whose implementation is secure even if a bounded amount of arbitrary (adaptively, adversarially chosen) information about the internal state of SC is leaked during computation of each output block. This captures all possible sidechannel attacks on SC where (1) the amount of information leaked in a given period is bounded, but overall can be arbitrary large and (2) “only computation leaks information”. The construction is based on alternating extraction (used in the intrusionresilient secretsharing scheme from FOCS’07). We move this concept to the computational setting by proving a lemma that states that the output of any pseudorandom generator (PRG) has high HILL pseudoentropy (i.e. is indistinguishable from some distribution with high minentropy) even if arbitrary information about the seed is leaked. The amount of leakage λ that we can tolerate in each step depends on the strength of the underlying PRG, it is at least logarithmic, but can be as large as a constant fraction of the internal state of SC if the PRG is exponentially hard. 1.
Evolutionary games on graphs
, 2007
"... Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in nonequilibrium statistical physics. This review gives a tutorialtype overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by nonmeanfieldtype social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner’s Dilemma, the Rock–Scissors–Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Concurrent Reachability Games
, 2008
"... We consider concurrent twoplayer games with reachability objectives. In such games, at each round, player 1 and player 2 independently and simultaneously choose moves, and the two choices determine the next state of the game. The objective of player 1 is to reach a set of target states; the objecti ..."
Abstract

Cited by 49 (20 self)
 Add to MetaCart
We consider concurrent twoplayer games with reachability objectives. In such games, at each round, player 1 and player 2 independently and simultaneously choose moves, and the two choices determine the next state of the game. The objective of player 1 is to reach a set of target states; the objective of player 2 is to prevent this. These are zerosum games, and the reachability objective is one of the most basic objectives: determining the set of states from which player 1 can win the game is a fundamental problem in control theory and system verification. There are three types of winning states, according to the degree of certainty with which player 1 can reach the target. From type1 states, player 1 has a deterministic strategy to always reach the target. From type2 states, player 1 has a randomized strategy to reach the target with probability 1. From type3 states, player 1 has for every real ε> 0 a randomized strategy to reach the target with probability greater than 1 − ε. We show that for finite state spaces, all three sets of winning states can be computed in polynomial time: type1 states in linear time, and type2 and type3 states in quadratic time. The algorithms to compute the three sets of winning states also enable the construction of the winning and spoiling strategies.
Settling the Complexity of Computing TwoPlayer Nash Equilibria
"... We prove that Bimatrix, the problem of finding a Nash equilibrium in a twoplayer game, is complete for the complexity class PPAD (Polynomial Parity Argument, Directed version) introduced by Papadimitriou in 1991. Our result, building upon the work of Daskalakis, Goldberg, and Papadimitriou on the c ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
We prove that Bimatrix, the problem of finding a Nash equilibrium in a twoplayer game, is complete for the complexity class PPAD (Polynomial Parity Argument, Directed version) introduced by Papadimitriou in 1991. Our result, building upon the work of Daskalakis, Goldberg, and Papadimitriou on the complexity of fourplayer Nash equilibria [21], settles a long standing open problem in algorithmic game theory. It also serves as a starting point for a series of results concerning the complexity of twoplayer Nash equilibria. In particular, we prove the following theorems: • Bimatrix does not have a fully polynomialtime approximation scheme unless every problem in PPAD is solvable in polynomial time. • The smoothed complexity of the classic LemkeHowson algorithm and, in fact, of any algorithm for Bimatrix is not polynomial unless every problem in PPAD is solvable in randomized polynomial time. Our results also have a complexity implication in mathematical economics: • ArrowDebreu market equilibria are PPADhard to compute.
Quantum Strategies
, 1999
"... We consider game theory from the perspective of quantum algorithms. Strategies in classical game theory are either pure (deterministic) or mixed (probabilistic). While not every twoperson zerosum finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is always ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
We consider game theory from the perspective of quantum algorithms. Strategies in classical game theory are either pure (deterministic) or mixed (probabilistic). While not every twoperson zerosum finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is always an equilibrium at which each player follows a mixed strategy. A mixed strategy deviating from the equilibrium strategy cannot increase a player's expected payoff. We show by example, however, that a player who implements a quantum strategy can increase his expected payoff, and explain the relation to efficient quantum algorithms. 1998 Physics and Astronomy Classification Scheme: 03.67.a, 03.67.Lx, 02.50.Le. American Mathematical Society Subject Classification: 81P15, 90D05. Journal of Economic Literature Classification System: C72. Key Words: quantum computation; game theory. Quantum strategies David A. Meyer Attention to the physical representation of information underlies the recent t...
Separating succinct noninteractive arguments from all falsifiable assumptions
 In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11
, 2011
"... An argument system (computationally sound proof) for N P is succinct, if its communication complexity is polylogarithmic the instance and witness sizes. The seminal works of Kilian ’92 and Micali ’94 show that such arguments can be constructed under standard cryptographic hardness assumptions with f ..."
Abstract

Cited by 35 (1 self)
 Add to MetaCart
An argument system (computationally sound proof) for N P is succinct, if its communication complexity is polylogarithmic the instance and witness sizes. The seminal works of Kilian ’92 and Micali ’94 show that such arguments can be constructed under standard cryptographic hardness assumptions with four rounds of interaction, and that they be made noninteractive in the randomoracle model. The latter construction also gives us some evidence that succinct noninteractive arguments (SNARGs) may exist in the standard model with a common reference string (CRS), by replacing the oracle with a sufficiently complicated hash function whose description goes in the CRS. However, we currently do not know of any construction of SNARGs with a proof of security under any simple cryptographic assumption. In this work, we give a broad blackbox separation result, showing that blackbox reductions cannot be used to prove the security of any SNARG construction based on any falsifiable cryptographic assumption. This includes essentially all common assumptions used in cryptography (oneway functions, trapdoor permutations, DDH, RSA, LWE etc.). More generally, we say that an assumption is falsifiable if it can be modeled as an interactive game between an adversary and an efficient challenger that can efficiently decide if the adversary won the game. This is similar, in spirit, to the notion of falsifiability of Naor ’03, and captures the fact that we can efficiently check if an adversarial strategy breaks the assumption. Our separation result also extends to designated verifier SNARGs, where the verifier needs a trapdoor associated with the CRS to verify arguments, and slightly succinct SNARGs, whose size is only required to be sublinear in the statement and witness size.
Efficient Margin Maximizing with Boosting
, 2002
"... AdaBoost produces a linear combination of base hypotheses and predicts with the sign of this linear combination. It has been observed that the generalization error of the algorithm continues to improve even after all examples are classified correctly by the current signed linear combination, whic ..."
Abstract

Cited by 35 (7 self)
 Add to MetaCart
AdaBoost produces a linear combination of base hypotheses and predicts with the sign of this linear combination. It has been observed that the generalization error of the algorithm continues to improve even after all examples are classified correctly by the current signed linear combination, which can be viewed as hyperplane in feature space where the base hypotheses form the features.