Results 1 
5 of
5
Ideal Membership in Polynomial Rings over the Integers
 J. Amer. Math. Soc
"... Abstract. We present a new approach to the ideal membership problem for polynomial rings over the integers: given polynomials f0, f1,..., fn ∈ Z[X], where X = (X1,..., XN) is an Ntuple of indeterminates, are there g1,..., gn ∈ Z[X] such that f0 = g1f1 + · · · + gnfn? We show that the degree of th ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
Abstract. We present a new approach to the ideal membership problem for polynomial rings over the integers: given polynomials f0, f1,..., fn ∈ Z[X], where X = (X1,..., XN) is an Ntuple of indeterminates, are there g1,..., gn ∈ Z[X] such that f0 = g1f1 + · · · + gnfn? We show that the degree of the polynomials g1,..., gn can be bounded by (2d) 2O(N2) (h + 1) where d is the maximum total degree and h the maximum height of the coefficients of f0,..., fn. Some related questions, primarily concerning linear equations in R[X], where R is the ring of integers of a number field, are also treated.
Automating elementary numbertheoretic proofs using Gröbner bases
"... Abstract. We present a uniform algorithm for proving automatically a fairly wide class of elementary facts connected with integer divisibility. The assertions that can be handled are those with a limited quantifier structure involving addition, multiplication and certain numbertheoretic predicates ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We present a uniform algorithm for proving automatically a fairly wide class of elementary facts connected with integer divisibility. The assertions that can be handled are those with a limited quantifier structure involving addition, multiplication and certain numbertheoretic predicates such as ‘divisible by’, ‘congruent ’ and ‘coprime’; one notable example in this class is the Chinese Remainder Theorem (for a specific number of moduli). The method is based on a reduction to ideal membership assertions that are then solved using Gröbner bases. As well as illustrating the usefulness of the procedure on examples, and considering some extensions, we prove a limited form of completeness for properties that hold in all rings. 1
AN EFFECTIVE WEIERSTRASS DIVISION THEOREM
"... ABSTRACT. We prove an effective Weierstrass Division Theorem for algebraic restricted power series with padic coefficients. The complexity of such power series is measured using a certain height function on the algebraic closure of the field of rational functions over Q. The paper includes a constr ..."
Abstract
 Add to MetaCart
ABSTRACT. We prove an effective Weierstrass Division Theorem for algebraic restricted power series with padic coefficients. The complexity of such power series is measured using a certain height function on the algebraic closure of the field of rational functions over Q. The paper includes a construction of this height function, following an idea of Kani. We apply the effective Weierstrass Division Theorem to obtain a numbertheoretic criterion for membership in ideals of polynomial rings with integer coefficients. CONTENTS