Results 1  10
of
10
NonBoolean Descriptions for MindMatter Problems
"... A framework for the mindmatter problem in a holistic universe which has no parts is outlined. The conceptual structure of modern quantum theory suggests to use complementary Boolean descriptions as elements for a more comprehensive nonBoolean description of a world without an apriorigiven mindmat ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
A framework for the mindmatter problem in a holistic universe which has no parts is outlined. The conceptual structure of modern quantum theory suggests to use complementary Boolean descriptions as elements for a more comprehensive nonBoolean description of a world without an apriorigiven mindmatter distinction. Such a description in terms of a locally Boolean but globally nonBoolean structure makes allowance for the fact that Boolean descriptions play a privileged role in science. If we accept the insight that there are no ultimate building blocks, the existence of holistic correlations between contextually chosen parts is a natural consequence. The main problem of a genuinely nonBoolean description is to find an appropriate partition of the universe of discourse. If we adopt the idea that all fundamental laws of physics are invariant under time translations, then we can consider a partition of the world into a tenseless and a tensed domain. In the sense of a regulative principle, the material domain is defined as the tenseless domain with its homogeneous time. The tensed domain contains the mental domain with a tensed time characterized by a privileged position, the Now. Since this partition refers to two complementary descriptions which are not given apriori,wehavetoexpectcorrelations between these two domains. In physics it corresponds to Newton’s separation of universal laws of nature and contingent initial conditions. Both descriptions have a nonBoolean structure and can be encompassed into a single nonBoolean description. Tensed and tenseless time can be synchronized by holistic correlations. 1.
Truth and Light: Physical Algorithmic Randomness
, 2005
"... This thesis examines some problems related to Chaitin's Ω number. In the first section, we describe several new minimalist prefixfree machines suitable for the study of concrete algorithmic information theory; the halting probabilities of these machines are all Ω numbers. In the second part, ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
This thesis examines some problems related to Chaitin's Ω number. In the first section, we describe several new minimalist prefixfree machines suitable for the study of concrete algorithmic information theory; the halting probabilities of these machines are all Ω numbers. In the second part, we show that when such a sequence is the result given by a measurement of a system, the system itself can be shown to satisfy an uncertainty principle equivalent to Heisenberg's uncertainty principle. This uncertainty principle also implies Chaitin's strongest form of incompleteness. In the last part, we show that Ω can be written as an infinite product over halting programs; that there exists a "natural," or basefree formulation that does not (directly) depend on the alphabet of the universal prefixfree machine; that Tadaki's generalized halting probability is welldefined even for arbitrary univeral Turing machines and the plain complexity; and finally, that the natural generalized halting probability can be written as an infinite product over primes and has the form of a zeta function whose zeros encode halting information. We conclude with some speculation about physical systems in which partial randomness could arise, and identify many open problems.
How to acknowledge hypercomputation?
, 2007
"... We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models.
How to acknowledge hypercomputation?
, 2008
"... We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models. ..."
Abstract
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models.
Centre for Discrete Mathematics and Theoretical Computer Science The Physical World as a Virtual Reality
, 2007
"... Not only is the universe stranger than we imagine, it is stranger than we can imagine ..."
Abstract
 Add to MetaCart
Not only is the universe stranger than we imagine, it is stranger than we can imagine
and
, 2007
"... We discuss the question of how to operationally validate whether or not a “hypercomputer ” performs better than the known discrete computational models. 1 ..."
Abstract
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer ” performs better than the known discrete computational models. 1
Gödel Incompleteness and the Black Hole Information Paradox
, 705
"... Semiclassical reasoning suggests that the process by which an object collapses into a black hole and then evaporates by emitting Hawking radiation may destroy information, a problem often referred to as the black hole information paradox. Further, there seems to be no unique prediction of where the ..."
Abstract
 Add to MetaCart
Semiclassical reasoning suggests that the process by which an object collapses into a black hole and then evaporates by emitting Hawking radiation may destroy information, a problem often referred to as the black hole information paradox. Further, there seems to be no unique prediction of where the information about the collapsing body is localized. We propose that the latter aspect of the paradox may be a manifestation of an inconsistent selfreference in the semiclassical theory of black hole evolution. This suggests the inadequacy of the semiclassical approach or, at worst, that standard quantum mechanics and general relavity are fundamentally incompatible. One option for the resolution for the paradox in the localization is to identify the Gödellike incompleteness that corresponds to an imposition of consistency, and introduce possibly new physics that supplies this incompleteness. Another option is to modify the theory in such a way as to prohibit selfreference. We discuss various possible scenarios to implement these options, including eternally collapsing objects, black hole remnants, black hole final states, and simple variants of semiclassical quantum gravity. PACS numbers: 04.70.Dy, 03.67.a, 03.65.Ud I.