Results 1  10
of
144
Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information
, 2006
"... This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this pa ..."
Abstract

Cited by 1304 (42 self)
 Add to MetaCart
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this paper is as follows. Suppose that is a superposition of spikes @ Aa @ A @ A obeying @�� � A I for some constant H. We do not know the locations of the spikes nor their amplitudes. Then with probability at least I @ A, can be reconstructed exactly as the solution to the I minimization problem I aH @ A s.t. ” @ Aa ” @ A for all
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 832 (16 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Elad M 2003 Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization
 Proc. Natl Acad. Sci. USA 100 2197–202
"... Given a ‘dictionary ’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considere ..."
Abstract

Cited by 368 (32 self)
 Add to MetaCart
Given a ‘dictionary ’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases, and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the ℓ1 norm of the coefficients γ. In this paper, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We introduce the Spark, ameasure of linear dependence in such a system; it is the size of the smallest linearly dependent subset (dk). We show that, when the signal S has a representation using less than Spark(D)/2 nonzeros, this representation is necessarily unique.
Uncertainty principles and ideal atomic decomposition
 IEEE Transactions on Information Theory
, 2001
"... Suppose a discretetime signal S(t), 0 t
Abstract

Cited by 361 (19 self)
 Add to MetaCart
Suppose a discretetime signal S(t), 0 t<N, is a superposition of atoms taken from a combined time/frequency dictionary made of spike sequences 1ft = g and sinusoids expf2 iwt=N) = p N. Can one recover, from knowledge of S alone, the precise collection of atoms going to make up S? Because every discretetime signal can be represented as a superposition of spikes alone, or as a superposition of sinusoids alone, there is no unique way of writing S as a sum of spikes and sinusoids in general. We prove that if S is representable as a highly sparse superposition of atoms from this time/frequency dictionary, then there is only one such highly sparse representation of S, and it can be obtained by solving the convex optimization problem of minimizing the `1 norm of the coe cients among all decompositions. Here \highly sparse " means that Nt + Nw < p N=2 where Nt is the number of time atoms, Nw is the number of frequency atoms, and N is the length of the discretetime signal.
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 345 (6 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinato ..."
Abstract

Cited by 202 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
A generalized uncertainty principle and sparse representation in pairs of bases
 IEEE Trans. Inform. Theory
, 2002
"... An elementary proof of a basic uncertainty principle concerning pairs of representations of ℜ N vectors in different orthonormal bases is provided. The result, slightly stronger than stated before, has a direct impact on the uniqueness property of the sparse representation of such vectors using pair ..."
Abstract

Cited by 173 (12 self)
 Add to MetaCart
An elementary proof of a basic uncertainty principle concerning pairs of representations of ℜ N vectors in different orthonormal bases is provided. The result, slightly stronger than stated before, has a direct impact on the uniqueness property of the sparse representation of such vectors using pairs of orthonormal bases as overcomplete dictionaries. The main contribution in this paper is the improvement of an important result due to Donoho and Huo concerning the replacement of the l0 optimization problem by a linear programming minimization when searching for the unique sparse representation. 1
Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions
, 2004
"... In this paper, we develop a robust uncertainty principle for finite signals in C N which states that for nearly all choices T, Ω ⊂ {0,..., N − 1} such that T  + Ω  ≍ (log N) −1/2 · N, there is no signal f supported on T whose discrete Fourier transform ˆ f is supported on Ω. In fact, we can mak ..."
Abstract

Cited by 119 (12 self)
 Add to MetaCart
In this paper, we develop a robust uncertainty principle for finite signals in C N which states that for nearly all choices T, Ω ⊂ {0,..., N − 1} such that T  + Ω  ≍ (log N) −1/2 · N, there is no signal f supported on T whose discrete Fourier transform ˆ f is supported on Ω. In fact, we can make the above uncertainty principle quantitative in the sense that if f is supported on T, then only a small percentage of the energy (less than half, say) of ˆ f is concentrated on Ω. As an application of this robust uncertainty principle (QRUP), we consider the problem of decomposing a signal into a sparse superposition of spikes and complex sinusoids f(s) = � α1(t)δ(s − t) + � α2(ω)e i2πωs/N / √ N. t∈T We show that if a generic signal f has a decomposition (α1, α2) using spike and frequency locations in T and Ω respectively, and obeying ω∈Ω T  + Ω  ≤ Const · (log N) −1/2 · N, then (α1, α2) is the unique sparsest possible decomposition (all other decompositions have more nonzero terms). In addition, if T  + Ω  ≤ Const · (log N) −1 · N, then the sparsest (α1, α2) can be found by solving a convex optimization problem. Underlying our results is a new probabilistic approach which insists on finding the correct uncertainty relation or the optimally sparse solution for nearly all subsets but not necessarily all of them, and allows to considerably sharpen previously known results [9, 10]. In fact, we show that the fraction of sets (T, Ω) for which the above properties do not hold can be upper bounded by quantities like N −α for large values of α. The QRUP (and the application to finding sparse representations) can be extended to general pairs of orthogonal bases Φ1, Φ2 of C N. For nearly all choices Γ1, Γ2 ⊂ {0,..., N − 1} obeying Γ1  + Γ2  ≍ µ(Φ1, Φ2) −2 · (log N) −m, where m ≤ 6, there is no signal f such that Φ1f is supported on Γ1 and Φ2f is supported on Γ2 where µ(Φ1, Φ2) is the mutual coherence between Φ1 and Φ2.
On sparse reconstruction from Fourier and Gaussian measurements
 Communications on Pure and Applied Mathematics
, 2006
"... Abstract. This paper improves upon best known guarantees for exact reconstruction of a sparse signal f from a small universal sample of Fourier measurements. The method for reconstruction that has recently gained momentum in the Sparse Approximation Theory is to relax this highly nonconvex problem ..."
Abstract

Cited by 116 (9 self)
 Add to MetaCart
Abstract. This paper improves upon best known guarantees for exact reconstruction of a sparse signal f from a small universal sample of Fourier measurements. The method for reconstruction that has recently gained momentum in the Sparse Approximation Theory is to relax this highly nonconvex problem to a convex problem, and then solve it as a linear program. We show that there exists a set of frequencies Ω such that one can exactly reconstruct every rsparse signal f of length n from its frequencies in Ω, using the convex relaxation, and Ω has size k(r, n) = O(r log(n)·log 2 (r) log(r log n)) = O(r log 4 n). A random set Ω satisfies this with high probability. This estimate is optimal within the log log n and log 3 r factors. We also give a relatively short argument for a similar problem with k(r, n) � r[12 + 8 log(n/r)] Gaussian measurements. We use methods of geometric functional analysis and probability theory in Banach spaces, which makes our arguments quite short. 1.
Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit, submitted
, 2007
"... Abstract. This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has ..."
Abstract

Cited by 102 (10 self)
 Add to MetaCart
Abstract. This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L1minimization. Our algorithm ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is exact provided the linear measurements satisfy the Uniform Uncertainty Principle. 1.