Results 1 
4 of
4
General logics
 In Logic Colloquium 87
, 1989
"... theory, categorical logic. model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms repre ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
theory, categorical logic. model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms representing proofs as usual. A natural equivalence relation on institutions is defined such that its equivalence classes are logics. Several invariants are defined for this equivalence, including a Lindenbaum
What is a Logic? In memoriam Joseph Goguen
"... model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms representing proofs as usual. A ..."
Abstract
 Add to MetaCart
model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms representing proofs as usual. A natural equivalence relation on institutions is defined such that its equivalence classes are logics. Several invariants are defined for this equivalence, including a Lindenbaum
An Axiomatic Approach to Structuring Specifications
"... In this paper we develop an axiomatic approach to structured specifications in which both the underlying logical system and corresponding institution of the structured specifications are treated as abstract institutions, which means two levels of institution independence. This abstract axiomatic app ..."
Abstract
 Add to MetaCart
In this paper we develop an axiomatic approach to structured specifications in which both the underlying logical system and corresponding institution of the structured specifications are treated as abstract institutions, which means two levels of institution independence. This abstract axiomatic approach provides a uniform framework for the study of structured specifications independently from any actual choice of specification building operators, and moreover it unifies the theory and the model oriented approaches. Within this framework we develop concepts and results about ‘abstract structured specifications ’ such as colimits, model amalgamation, compactness, interpolation, sound and complete proof theory, and pushoutstyle parameterization with sharing, all of them in a top down manner dictated by the upper level of institution independence. 1.
Under consideration for publication in Math. Struct. in Comp. Science Interpolation for Predefined Types
, 2008
"... model theoretic framework of the theory of institutions. For this semantics we develop a generic interpolation result which can be easily applied to various concrete situations from the theory and practice of specification and programming. Our study of interpolation is motivated by a number of impor ..."
Abstract
 Add to MetaCart
model theoretic framework of the theory of institutions. For this semantics we develop a generic interpolation result which can be easily applied to various concrete situations from the theory and practice of specification and programming. Our study of interpolation is motivated by a number of important applications to computing science especially in the area of structured specifications. 1.